VkIT
 Karlsruhe Institute of Technology Face Track Retrieval in Movies Across Age

Esam Ghaleb ${ }^{1}$, Makarand Tapaswi², Ziad Al-Halah², Hazım Ekenel ${ }^{1}$, Rainer Stiefelhagen²
${ }^{1}$ Smart Interaction, Mobile Intelligence, and Multimedia Technologies Lab, Istanbul Technical University, Istanbul, Turkey ${ }^{2}$ Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany

Contributions

- Challenging face track data set: Harry Potter Movies Aging Data set (Accio)
- Spans a period of ten years, showing large variations in face images for young actors
- Two tasks for the evaluation: within and across face track retrieval
- Baseline results for the retrieval performance using state of art face track descriptor

Contact

 ghalebe@itu.edu.tr tapaswi@kit.edu
Download

cvhci.anthropomatik.kit.edu/projects/mma

Motivation

Video face recognition challenges such as illumination, resolution and pose are well studied. However there is no data set to study video-based age invariant face recognition. In this work we present a face track data set: Harry Potter Movies Aging Data set (Accio) to study the effects of aging on facial
 appearance.

Data Set

- Data Source

Data is collected and organized using the eight Harry Potter Movies that were released in a period of ten years (2001 2011).

- Face Track Descriptor

We first detect shot boundaries and within each shot use multi-pose face detectors to find faces. A particle filter tracker is used to form face tracks [2].

The tracks are then encoded using state-of-art Video Fisher Vector Faces [18].

- Statistics

The data set contains a total of 38,464 face tracks. 22,830 (59.4\%) of these face tracks are labeled with one of 121 character identities as they appear in the film series. The others act as a distractor set for the experiments.

	HP-1	HP-2	HP-3	HP-4	HP-5	HP-6	HP-7	HP-8
\# characters	36	42	34	44	47	41	56	54
\# face tracks	5249	5335	3919	7616	5850	3354	2910	4231
\# unknown tracks	2006	1874	1437	4237	2316	1116	623	2025
\# named tracks	3243	3461	2482	3379	3534	2238	2287	2206

- Comparison of age-invariant face recognition data sets

Unlike other data sets, ours consists of face tracks, which on average are 50 frames (2 seconds) long thus yielding over 1.9 million face images

Data set	video?	\# images	\# people	age span
FGNET	No	1,002	82	$0-45$
MORPH	No	55,134	13,618	$0-5$
CACD	No	163,446	2,000	$0-10$
ACCIO [Ours]	Yes	38,464 tracks	121	$0-10$

Experiments

- Within movie face track retrieval

	HP-1	HP-2	HP-3	HP-4	HP-5	HP-6	HP-7	HP-8
P @ 1	90.8	89.3	90.9	85.1	89.4	91.1	91.3	89.4
P @ 5	81.5	79.0	79.1	72.3	79.3	80.4	82.1	78.6
P @ 20	71.9	64.0	61.5	57.3	63.7	64.3	70.7	63.0
P @ 50	67.9	57.6	53.0	54.7	59.4	55.8	68.0	57.2
P @ 100	70.9	54.8	53.1	58.5	55.5	51.1	62.8	53.0
MAP	42.4	31.7	31.2	28.4	32.1	30.4	38.6	33.2

- Across movies face track retrieval

	HP-1	HP-2	HP-3	HP-4	HP-5	HP-6	HP-7	HP-8
HP-1	42.4	31.1	26.8	24.5	21.5	22.2	27.7	20.0
HP-2	32.1	31.7	22.9	20.1	18.6	19.8	23.2	17.9
HP-3	23.0	20.8	31.2	19.9	18.1	21.0	23.4	16.2
HP-4	27.2	23.3	27.1	28.4	20.9	23.0	24.4	20.5
HP-5	20.3	18.5	22.0	17.4	32.1	22.5	25.7	20.8
HP-6	21.4	18.3	24.3	19.8	23.7	30.4	24.5	17.9
HP-7	24.3	20.8	24.7	19.6	26.4	24.8	38.5	25.5
HP-8	19.9	18.8	20.2	18.1	21.7	20.8	28.4	33.2

- Precision @ k results

Acknowledgment: This work was funded by the German Research Foundation under contract no. STI-598/2-1; TUBITAK within the CHIST-ERA project titled CAMOMILE, project no. 112E176; and a Marie Curie FP7 Integration Grant in the 7th EU Framework.

