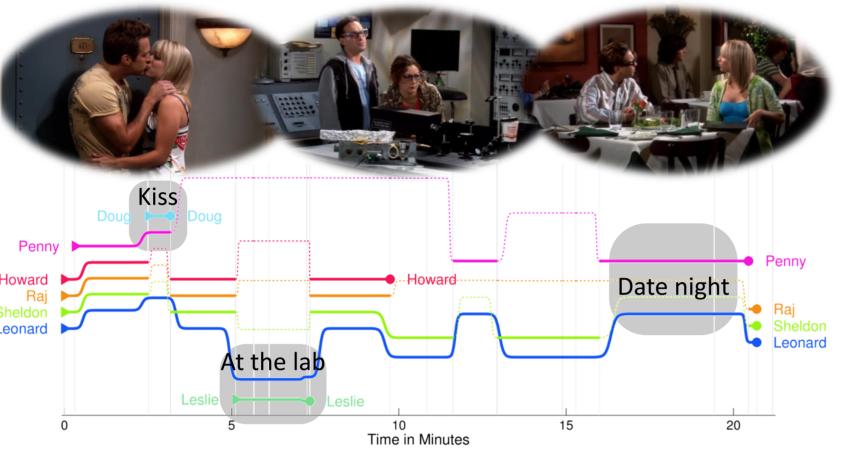

Visualizing Character Interactions as a Timeline

Makarand Tapaswi, Martin Bäuml, Rainer Stiefelhagen

Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany

Contributions


- An automatic approach to visualize character interactions within videos as timeline charts
- Positions of character lines in the *StoryGraph* are formulated as an optimization problem trading off *aesthetics* and *functionality*
- Video scene change detection based on dynamic programming using cues such as shot threading

Motivation

Inspired by the comic strip http://xkcd.com/657 we present a technique to automatically visualize character interactions of a TV episode. StoryGraphs can be used in *smart browsing*, or *video*

retrieval such as searching for favorite scenes in the episode. They also see applications in other areas which depend on analysis of people-people interactions such as *crisis control room* analysis, group meetings, etc.

Scene detection Shot threading

StoryGraphs loss functions

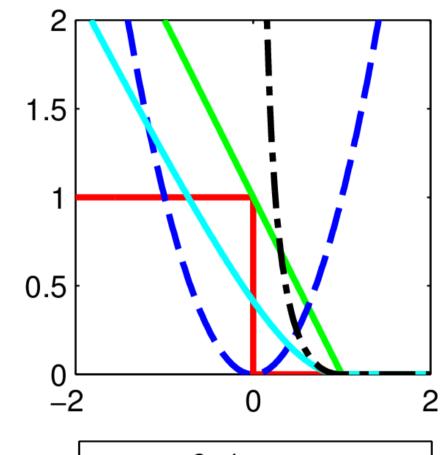
proximity

bring co-occurring characters closer

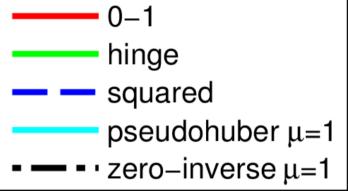
$$L_p^{(1)} = \frac{1}{N_P N_T} \sum_{c_i, c_j, t} p_{c_i, c_j, t} \cdot (x_t^{c_i} - x_t^{c_j})^2$$

separate characters that do not appear together

$$L_p^{(2)} = \frac{1}{N_P N_T} \sum_{c_i, c_j, t} \mathbb{1}\{p_{c_i, c_j, t} = 0\} \cdot (x_t^{c_i} - x_t^{c_j})^2$$


prefer straight lines

$$L_l = \frac{1}{N_C N_T} \sum_{c,t} (x_t^c - \mu_{\backslash x_t^c})^2$$


maintain *minimum separation*

$$L_{s} = \frac{1}{N_{P}N_{T}} \sum_{c_{i}, c_{j}, t} \mathcal{Z}((x_{t}^{c_{i}} - x_{t}^{c_{j}})^{2}, \mu_{s})$$

minimize number of crossings

StoryGraphs

via SIFT matches

Dynamic programming

Group shots into scenes to maximize internal color-based shot similarity and retain shot-threads within one scene

$$\begin{split} \mathcal{S}^* &= \operatorname*{argmax}_{S_i} \sum_{i=1}^{N_{sc}} \sum_{s \in S_i} \alpha(|\mathcal{P}|) (\phi(\mathcal{C}(s, \mathcal{P})) + T_{s, \mathcal{P}}) \\ \text{scenes} \quad \text{color-similarity} \quad \text{threading} \end{split}$$

Concept

Add shot to	Color similarity	Part of thread	shots
Same scene	high	\checkmark	scenes
New scene	low 🖌	×	

Face tracking and recognition [Bäuml2013]

Multi-pose face detector

Multinomial logistic

$$L_{c} = \frac{1}{N_{P}N_{T}} \sum_{c_{i},c_{j},t} \mathcal{H}((x_{t}^{c_{i}} - x_{t}^{c_{j}})(x_{t+1}^{c_{i}} - x_{t+1}^{c_{j}}), \mu_{c})$$

 $\mathcal{L}(\mathbf{x}) = L_p^{(1)}(\mathbf{x}) - L_p^{(2)}(\mathbf{x}) + L_l(\mathbf{x}) + L_s(\mathbf{x}) + L_c(\mathbf{x})$ optimize $\mathbf{x}^* = \arg\min \mathcal{L}(\mathbf{x})$

Results

Scene detection evaluation

007640	008144	008272	009446	
009912	009971	010361	010534	}
010714	010780	010860	011097	

Episode	σ (s)		<i>R</i> ₃₀	
	Ours	[15]	Ours	[15]
BBT-1	18.5	21.4	75.0	62.5
BBT-2	8.0	16.2	90.9	81.8
BF-1	13.4	19.5	84.9	72.7
BF-2	12.0	16.3	96.7	86.7
GOT-1	12.6	21.6	88.6	80.0
GOT-2	17.1	29.5	87.1	77.4

www.kit.edu

[15] Z. Rasheed and M. Shah. Detection and Representation of Scenes in Videos. IEEE Transactions on Multimedia, 7(6): 1097–1105, 2005.

Impact of person identification on StoryGraphs

	BBT (6)	BUFFY (6)	GOT (10)
#Characters	11	27	66
Mean Accuracy	92.36%	78.12%	75.25%
SG Presence Error Count	33	260	680
SG Presence Error Fraction	4.85%	8.08%	4.24%

and particle filter tracker

regression classifiers

M. Bäuml, M. Tapaswi and R. Stiefelhagen. Semi-supervised Learning with Constraints for Person Identification in Multimedia Data. In CVPR 2013.

Contact

{tapaswi, baeuml}@kit.edu

Project page (data and code) http://cvhci.anthropomatik.kit.edu/projects/mma

Quantitative evaluation

BBT-1 0.32	BBT-2 0.34	BF-1 0.46	BF-2	GOT-1	GOT-2
0.32	0.34	0.46	0.20	0.00	
		0110	0.29	0.30	0.21
0.45	0.67	0.30	0.34	0.34	0.43
4	12	0	2	1	6
1	1	1	0	1	3
0	1	83	43	212	66
	1	1 1	1 1 1	1 1 0	1 1 1 0 1

Acknowledgment: This work was supported by the Quaero Programme, funded by OSEO.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

