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Abstract

Structured visual content such as graphs, flow charts or
similar cannot be perceived by visually impaired people
and machines. To make this possible, we propose an ap-
proach that converts such structured visual content in to a
machine-understandable representation. Previous work ex-
ists only for very restricted subfields of this task which make
strong assumptions about the images. To circumvent these
restrictions, we propose an approach using machine learn-
ing, which tries to solve the problem for real data by using
a synthetic data set. We showed, that this is successful to
some degree and discuss the limitations of this approach
and propose improvements for future applications.

1. Introduction

As concepts get more and more complex it gets harder to
explain them with words. Therefore, many explanations,
presentations and research papers use visually structured
content such as flow charts and graphs to aid understand-
ing. While this is a great possibility to condense a lot of
information, images are not comprehensible for everyone.
Visually impaired humans have so far no chance of gaining
any additional information via graphical representations by
themselves. Furthermore, knowledge extraction or searches
in those are impossible, since machines can not comprehend
visually structured content.

This paper is going to discuss old approaches to solve
this task and its problems and presents a novel way to con-
quer this task with the help of machine learning. In that ap-
proach we also show the benefits of synthetic to real learn-
ing to mitigate the lack of ground truth annotations.

2. Related Work

So far little work has been done on recognition of struc-
tured visual content in general. Existent research focuses
on various different subcategories of this field. Awal ez al.

[4] try to extract a graph like structure from hand drawn
flow charts. This separates the task into two parts. Rec-
ognizing the elements that represent the graphical compo-
nents and extracting the text itself. Auer ef al. [3] on the
other hand do not consider text and concentrate on rec-
ognizing limited graph structures. Those consist only of
fully colored circular nodes and bidirectional straight edges.
Their work uses a multi-step procedure with pre-processing,
segmentation, topology recognition, and post-processing,
while mainly using conventional computer vision methods
and pixel based operations. Vasudevan et al. [9] go one step
further, their goal is to directly extract the knowledge from
flow charts without recognizing an explicit graph structure.
Similarly, Wu et al. [10] want to generate code from given
flow charts. Both of these works make strict assumptions
about the given images and focus strictly on their use case.

In contrast, our approach aims at structured visual con-
tent more in general and does not demand a certain type
of graph structure. Therefore, we want to detect basic ele-
ments such as nodes and their content, as well as different
types of edges and their weights. The final graph represen-
tation should be purely descriptive, without being special-
ized for any certain use case.

3. Methods

Our approach mainly addresses the problem of mapping
from an image showing a graph structure to a set of nodes
and edges. In the following, we name this resulting set of
nodes and edges graph representation. Therefore, our task
describes the function

Image — {Node} U {Edge}.

Nodes in our case are defined as their unique identifier
and their containing text as content. Optional, a node can
contain a set of sub-nodes to define aggregations of nodes
called groupings. Similar to nodes, edges are also defined
by their identifier and their weights. In addition to this an
edge needs a start- and an end- node.



3.1. Traditional Approach: Computer Vision

Conventional computer vision methods use mostly pixel-
based operations to gain structural information. The main
task here is to differentiate between text and graph struc-
tures in the image. Therefore, we used different methods
to extract coherent regions of certain size and shape. These
methods depend largely on the given image and its quality.
Different images follow different rules in their content and
therefore need to be treated individually. Another challenge
to solve are interrupted lines. These need to be detected and
reconstructed accordingly.

Due to these challenges and various problems, that are
discussed in the Discussion, we did not pursue this approach
any further.

3.2. Proposed Approach: Synthetic to Real

In comparison to the conventional approach we use
methods of machine learning, in particular we use object de-
tection to recognize structures. In our case these are nodes
and edges. As can be seen in Figure 1, an OCR is used in
parallel to extract the texts with their bounding boxes from
the image. Afterwards, the two results are combined to cre-
ate a graph representation with the corresponding text as-
signment.

Object Detection

Create Graph Final Graph
Representation Representation

Figure 1. Showing the full Pipeline Scheme to generate the Graph
Representation.

However, object detection is a supervised learning method,
which means, we need labeled data to train a model. Since
we do not have such data, we try to generate synthetic im-
ages with corresponding annotations. To achieve the best
performances on real data, this synthetic data must be as
realistic as possible.

3.2.1 Synthetic Data Generation

The goal is to generate images, that mimic a given set of
real data while exhibiting high variation. Since an infinite
amount of variation is not feasible, we have decided on the
following properties: Nodes exist as rectangles or ellipses.
A node can contain text and/or other nodes. Edges always
run between two nodes as a direct or angled line. They can
also have arrowheads at both, one or none of its ends. The
line can be solid or dashed, and the appearance of the arrow-
head can vary. The weights of an edge rest on it or intersect
the line. Also, for all elements, the size and line thickness

can vary.
In our implementation, nodes are distributed on a grid struc-
ture, varying in their position and shape. Their text content
is selected from a list [2]. Then a number of edges is placed
between nodes, no connection is taken twice, and care is
taken that an edge does not collide with a node, except for
connections that run into a grouping. Along such an edge,
the weight, a number between 0 and 1, is written to a ran-
dom position. Additionally, background text is added.

All of these actions are taken randomly, determined by a
set of hyper-parameters. Therefore, we have generated a
more difficult data set than a real data set, as it contains var-
ious anomalies. This is due to the generous use of random
ranges, which sometimes creates more complexity than is
needed later. In total, we generated 12000 images, with a
70%, 20% and 10% split into train, validation and test data.
Additionally, we generated all bounding box annotations,
text bounding boxes and ground truth graph representations
for possible later evaluations.

3.2.2 Object Detection

The objects generated in our data set are defined by a rect-
angular bounding box and a class label. Both nodes and
groupings have the same class. Edges on the other hand
are differentiated by their start and end points. Diagonal
edges and angled edges go from one corner of their bound-
ing box to another one (e.g. bottom-left to top-right). Hor-
izontal and vertical edges go from the center of one side to
the center of the opposite side of their bounding box (e.g.
left to right). An edge is labeled horizontal or vertical if it is
within +/- 2.5 degrees of being perfectly horizontal or verti-
cal. Therefore, we have 4 diagonal classes, 2 horizontal and
2 vertical. Additionally, an edge could be bi-directional or
non-directional, this leads to further 8 classes respectively.

The model used for the object detection is YOLOVS [06]
with the large weight configuration. Important for our class
labels is that in the data augmentation step, no flipping is
involved. Furthermore, the IoU threshold in training and
detection should be set to zero, as overlapping bounding
boxes are normal in this application.

323 OCR

Since text is an elementary component of graphs, it must
also be included in the final graph representation. Because
our object detection deals only with the detection of the
structure, we used easy-OCR [1] for the text. This OCR
works parallel to the object detection (see Figure 1) and has
no dependencies to it. It takes the same image as the object
detection and returns a list of all detected texts, as well as
their bounding boxes and positions. These can be used later
in the graph creation for the assignment.



3.2.4 Create Graph Representation

The results from object detection and OCR are now merged
into a graph representation. This can be divided into two
main steps:

Step 1 Construction of the graph structure:

In this process, groupings are detected at the beginning. To
do this, the overlaps of all bounding boxes are determined.
If a box is almost completely inside another, it is added to
the larger node as a subnode. Afterwards, the nodes are
connected with edges. For this, the connection points are
searched for an edge on its bounding box. The connection
points represent the start and end points of an edge. For a
diagonal edge this would be a corner of a bounding box, for
a horizontal edge, this would be the center of one bound-
ing box side. For each connection point the next adjacent
node is searched and connected to the edge. In the end,
all elements are connected accordingly and we have created
a graph structure, that contains all previously detected ob-
jects.

Step 2 Text mapping:

After the graph structure has been created, the texts have
to be assigned to the corresponding elements in the graph.
First, the overlap to the node boxes is determined for each
text bounding box. If the overlap is large enough, the text
is considered as a part of the node and added to it. The re-
maining texts must therefore belong to edges, or have been
placed freely in the image. To assign the edges, all possible
edge bounding boxes are determined for each text bound-
ing box, based on their overlap. Then the most probable
edge bounding box for the text is determined, based on all
possible courses of an edge within its bounding box. All re-
maining texts are assumed to be background texts and will
not be added to the graph representation.

4. Evaluation

This section focuses first on the data sets used for the
evaluation, then on the applied metrics and finally on the
most important numbers regarding the evaluation. For
deeper insights please consider reading the Appendix. We
will always distinguish between the object detection, the
graph structure and the OCR with the text assignment.

4.1. Different Data Sets

To evaluate our pipeline we use four different data sets.
We can divide these data sets into two groups, synthetic data
and real data.

The synthetic data is generated exactly like the training
data set and therefore has the same properties. From this
data set we take a subset, which consists only of human

understandable graphs, which we call adjusted synthetic test
set in the following.

For the real world data set we manually annotated a ran-
dom subset from DISKNET [5] images. As this data con-
tains behavior, that is not covered in our synthetic data set
we created an adjusted subset. This adjusted data set con-
tains only behavior included in our synthetic data set gener-
ation.

4.2. Metrics

In the following, we present the metrics we used to eval-
uate our results. To evaluate the object detection we use
common metrics. To evaluate the graph structure as well as
the OCR and text assignments, we define our own metrics,
since this is a problem without well established metrics.

4.2.1 Metrics for the Object Detection

To evaluate the object detection we use the m AP defined as

mAP

|classes| el #TP(c)+ #FP(c)
with a true positive (1T'P) as a prediction bounding box A
with an JoU (A, B) to a groundtruth bounding box B,

ANB
IoU(A,B) = 108
greater than a threshold, otherwise it is a false posi-
tive (FP). Furthermore, we evaluate the mAP aver-
aged for IoU thresholds from 0.5 to 0.95 with a step size
of 0.05 (COCQO’s [8] standard metric, simply denoted as
mAPQL.5,.95]).

4.2.2 Metrics for the Graph Structure

Evaluating graphs and their isomorphism is a complex prob-
lem. After the prediction the results contain a graph repre-
sentation with nodes and edges. But it contains no informa-
tion about which structure of the predicted graph is related
to which structure in the ground truth graph representation.
As we get the bounding boxes of the predicted structures
with our model we identify the relations between the pre-
dicted structures and the ground truth. We define

IsomorphicError = #mNodes + #mFEdges,

with mNodes and mFEdges as the amount of nodes and
edges in the prediction and the ground truth representation
which could not find a match. Therefore, this node or edge
is considered as missing in the ground truth or in the pre-
diction. According to this we also define the normalized
version

IsomorphicError
#Nodes + #FEdges

NormlIsomorphicError =



to be able to better compare graphs of different size. In ad-
dition, we also calculated this error measure only for the
nodes as well as the edges. We take only the missing nodes
and the missing edges for the isomorphic error and normal-
ize them with the number of nodes or edges in the graph.

4.2.3 Metrics for the Text Mapping and the OCR

To compare the results of our text recognition as well as
our assignment of the texts within the pipeline we define
another error measure. We use the Levenshtein Distance
[7]. The Levenshtein Distance L(X,Y) is defined as the
minimum number of deletions, insertions and replacement
operations to change text X to text Y. With this we can
define our

ZSma,tchad L(GTcontenh Pcontent)

OCRError = ,
Zsmatched #GTcontent

with Siatched as every matched structure, G ontent as the
content of the structure in ground truth, P,y ¢¢y: as the con-
tent of the structure in prediction and the amount of charac-
ters in the ground truth content #G7T.ontent-

4.3. Results

In the following sections we present the results, divided
into the object detection part, the graph representation and
the text recognition as well as their assignment.

4.3.1 Evaluation of the Object Detection

As we only obtain bounding box labels on the synthetic data
we evaluate the object detection only on the synthetic test
data set as visible in Table 1.

Class Labels mAP@.5:.95:
all 16619 0.676
node 9381 0.995
arrow_t12br 1248 0.867
arrow_t2b 114 0.376
arrow_tr2bl 1294 0.878
arrow_r2l 254 0.486
arrow_br2tl 1289 0.873
arrow_b2t 110 0.476
arrow_bl2tr 1271 0.863
arrow_12r 227 0.489
arrow _bi_t12br 643 0.799
arrow_bi_t2b 58 0.436
arrow_bi_tr2bl 610 0.779
arrow_bi_r21 120 0.47

Table 1. Showing the results of the object recognition on synthetic
test set.

4.3.2 Evaluation of Graph Representations

Table 2 shows the results of the normalized Isomorphic Er-
ror with direction on the four different data sets. The model
performed best on the adjusted synthetic data set. The mean
Isomorphic Error of DISKNET test set does not differ a lot
to the adjusted DISKNET test set.

Data Set Mean  Std.
Synthetic Test Set 0.134 0.132
Adjusted Synthetic Test Set  0.043  0.057
Disknet Test Set 0.328 0.139
Adjusted Disknet Test Set  0.325  0.139

Table 2. Showing the Isomorphic Error results on the different data
set.

If we look at the errors in detail, we see that the edges
cause more errors than the nodes, regardless of the data set.
An example of this is shown in Table 3, presenting the syn-
thetic data set.

Structure  Mean Std.
Nodes 0.016 0.0479
Edges 0.287 0.281

Table 3. Isomorphic Error Edges and Nodes on the Testset normal-
ized.

4.3.3 Evaluation of Text Mapping and the OCR

In the evaluation of text recognition and text assignment, we
observe the worst result in the synthetic test set. The best
OCRE-rror we observe in the adjusted DISKNET test set.

Data Set Mean  Std.
Synthetic Test Set 0.423 0.429
Adjusted Synthetic Test Set  0.29  0.115
Disknet Test Set 0.254 0.214
Adjusted Disknet Test Set 0.20 0.187

Table 4. Showing the OCR Error results on the different data set.

5. Discussion

The following sections discuss the different shortcom-
ings and possible improvements of our approach.

5.1. Traditional Approach: Computer Vision

This method is highly dependent on the given image and
needs to be adjusted accordingly. Therefore, good results
are only achievable with heavy fine-tuning. Since our task
involved real world images with lots of variation, this ap-
proach is not feasible. The data varies too much to create a
fixed set of rules that applies on all images.



5.2. Proposed Approach: Synthetic to Real

In our Synthetic to Real approach we can divide the lim-
itations into two categories. One category deals with the
limitations caused by the influence of the synthetic data set.
The second category focuses on the limitations caused by
the applied method.

5.2.1 Limitations: Data Set

The synthetic data set provides first good approaches to
generate different graphs. However, there are many vari-
ations that can be added to this data set. For example, round
edges and multiple nested groupings are missing. Also,
more shapes of nodes would be a useful extension. But
also more exotic representations, like combined edges are
missing. Furthermore, the data set does not contain any ad-
ditional information, such as legends. These would be an
interesting special case, since they often show elements of
the graph without having a semantic meaning for the graph
itself. For further improvements it would be interesting to
extend the synthetic data set to be able to represent even
more graphs of the real world.

5.2.2 Limitations: Methods

One of our main methodological limitations is the heuristic
assignment of text to edges. This constraint originates in the
problem, that we only work with bounding boxes of edges
and lost the information about their exact path. Addition-
ally, real world images do not follow any rule on how to as-
sign weights to edges and therefore it is difficult to design a
general heuristic. Similarly, our nodes are detected and pro-
cessed only by their bounding boxes too. Even though this
did not lead to any problems now, it maybe would be better
to switch from an object detection via bounding boxes to
segmentation masks, especially for better edge detections.

6. Conclusion

Recognizing structured visual content is at least a diffi-
cult if not impossible task for visually impaired humans and
machines. Our proposed method produced good results on
this previously little explored topic. The goal of being able
to process structured visual content without great assump-
tions about their composition was reached with some lim-
itations. The overall capability of this approach is mainly
dependent on the data used for the training. Here we gen-
erated a synthetic data set, following different rules. Even
though this data set has its limitations (see Limitations) it
was able to provide enough information to the model, to
learn important aspects of structured visual content. This
also showed, that the training data set can be harder than
the real world data. Future work could extend this data set
to include more components and variations. Furthermore,

changing the detection step from bounding boxes to seg-
mentation maps could lead to more improvements.
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A. Isomorphic Error on different Data Sets
A.1. Synthetic Test Set
A.1.1 Full Graph

Dir. Norm. Mean Std. [Min,Max]

v X 1.930 2.025 [0,13]
X X 1.170  1.699 [0,11]
v v 0.134 0.132  [0,0.833]
X v 0.081 0.115  [0,0.833]
A.1.2 Nodes
Norm. Mean Std. [Min,Max]
X 0.126  0.351 [0,2]

v 0.016  0.0479 [0,0.5]

A.1.3 Edges

Dir. Norm. Mean Std. [Min,Max]
v X 1.805 1.853 [0,12]
X X 1.045 1.484 [0,9]

v v 0.287 0.281 [0,3]
X v 0.168 0.244 [0,3]

A.2. Adjusted Synthetic Test Set
A.2.1 Full Graph
Dir. Norm. Mean Std. [Min,Max]

v X 0.645 0.863 [0,3]

X X 0.419 0.752 [0,3]

v v 0.043 0.057 [0.0,0.2]

X v 0.03  0.053 [0.0,0.2]
A.2.2 Nodes

Norm. Mean  Std. [Min,Max]
X 0.065 0.246 [0,1]
v 0.009 0.035 [0.0,0.143]

A.2.3 Edges

Dir. Norm. Mean  Std. [Min,Max]
v X 0.581 0.872 [0,3]
X X 0.355 0.743 [0,3]
v v 0.1 0.163 [0.0,0.667]
X v 0.068 0.152 [0.0,0.667]

A.3. Disknet Test Set
A.3.1 Full Graph

Dir. Norm. Mean  Std. [Min,Max]
6.333 5.217 [1,22]
575 4.746 [1,21]
0.328 0.139 [0.091,0.654]
0.297 0.122 [0.091,0.556]

> N\ X% N\
NN X X

A.3.2 Nodes

Norm. Mean Std. [Min,Max]

X 0.542 1.322 [0,6]
v 0.037 0.076 [0.0,0.273]

A.3.3 Edges

Dir. Norm. Mean Std. [Min,Max]

v X 5792 432 [1,16]
X X 5.208 3.797 [1,15]
v v 0.613 0.233 [0.143,1.0]
X 4 0.553 0.211 [0.143,1.0]

A 4. Adjusted Disknet Test Set
A4.1 Full Graph

Dir. Norm. Mean  Std. [Min,Max]

v X 5.059 4.094 [1,17]

X X 4.471 3.5 [1,13]

v v 0.325 0.139 [0.091,0.654]

X v 0.291 0.123 [0.091,0.556]
A.4.2 Nodes

Norm. Mean Std. [Min,Max]
X 0.235 0.73 [0,3]
v 0.021 0.062 [0.0,0.25]

A4.3 Edges

Dir. Norm. Mean  Std. [Min,Max]

v X 4.824 3714 [1,16]
X X 4235 3.078 [1,12]
v v 0.622 0.226  [0.2,1.0]
X 4 0.558 0.213  [0.2,1.0]

B. OCR Error
B.1. Synthetic Test Set

Mean Std. [Min,Max]
0.423 0429 [0.0,13.0]

B.2. Adjusted Synthetic Test Set

Mean  Std. [Min,Max]
0.29 0.115 [0.091,0.474]

B.3. Disknet Test Set

Mean  Std. [Min,Max]
0.254 0.214 [0.039,0.692]

B.4. Adjusted Disknet Test Set

Mean  Std. [Min,Max]
0.2 0.187 [0.039,0.692]




