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Abstract

Interaction with computer systems is one of the most im-
portant topics of the digital age. Interfacing with a system
through body movements rather than tactile controls can
provide significant advantages. To make that possible, the
system needs to reliably detect the performed gestures. Sys-
tems using conventional deep learning methods are there-
fore trained on all possible gestures beforehand. Zero-Shot
learning models, on the other hand, aim to also recognize
gestures not seen during training when given their labels.
The model thus needs to extract information about an un-
seen gesture’s visual appearance from its label. Using typ-
ical text embedding modules like BERT, that information
will be focused on the semantics of the label rather than
its visual characteristics. In this work, we present several
forms of data augmentation that can be applied to the se-
mantic embeddings of the class labels in order to increase
their visual information content. This approach achieves
a significant performance increase for a Zero-Shot gesture
recognition model.

1. Introduction

Gesture recognition of videos is a rapidly growing field of
research and is becoming an important component of input-
device-less control of consumer products such as drones
or televisions. While various past works have focused on
the classification of gestures known in advance [9, 5], this
work deals with gesture recognition using Zero-Shot learn-
ing. This approach makes it possible to use unseen gestures
(meaning gestures that the model has not seen during train-
ing). The user of the product is thus offered the opportunity
to expand the command set for controlling the device.

In order to be able to classify samples of an unseen class,

a network needs to form an expectation of what the gesture
looks like based on its label. This is usually done through
the use of text embeddings [2]: Trained on unannotated text
data, language embedding models extract meaning from
words or sentences by converting them into a semantic em-
bedding vector. After creating a semantic embedding for
each class label, it is possible to compare the embeddings
of an unseen class with those of the seen classes to find
similarities between them. Based on those similarities, the
network can construct an expectation of what a sample of
that unseen class might look like.

It is quite common to apply data augmentation tech-
niques such as cropping, scaling or flipping to the video in-
put of a network in order to increase the amount of available
training samples [11]. However, in Zero-Shot learning there
are two different, equally important kinds of training infor-
mation for each class: visual and semantic. The common
data augmentation strategies only make it possible to mul-
tiply the amount of visual training data. But the semantic
information remains minimal, usually restricted to the sim-
ple label of the class. We aim to provide the network more
relevant semantic information about the different classes by
applying several forms of data augmentation to the semantic
embeddings of the class labels.

2. Method

First we need to build a network capable of Zero-Shot learn-
ing for gesture recognition. Then we define different forms
of data augmentation for the semantic embeddings of the
class labels and specify the experimental setting.

2.1. Architecture

The architecture chosen for our experiments largely corre-
sponds to the model presented in [4]. We rebuild its modu-
lar architecture using the information published in the paper.
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Figure 1. Overview of the network modules.

Certain modules are replaced or slightly modified to fit our
specific task. Here, only a brief overview of the function-
ality is given, explaining how the model tries to solve the
Zero-Shot task, and which changes are made. For detailed
information on the network modules, which are illustrated
in Figure 1, refer to [4, 14, 12, 13].

As visual input we use a temporal series of skeletons,
instead of RGB videos to remove unnecessary details such
as the background or a person’s clothing. Each skeleton is
a graph whose nodes represent the person’s joints. A full
input sample consists of a series of one skeleton graph per
frame. Such skeleton data can be obtained from RGB video
using a framework like Openpose [1]. To perform a visual
feature extraction of these input samples, a Graph Convo-
lutional Network (GCN) [14] is used. It consists of 9 spa-
tial temporal graph convolution layers with residual con-
nections. The resulting ouput is a 256-dimensional vector
containing the visual features.

Parallel to this visual path, a semantic feature extraction
of the vocabulary, i.e. all possible class labels, is performed
in two steps. First a Sentence BERT (SBERT) module [12]
transforms the class labels into semantic embeddings. This
is different from the original architecture in [4], where an
older Sent2Vec module [10] is used. The SBERT module
takes a sentence as input, analyzes it and yields two kinds
of outputs: a cls-token vector, which is a representation of
the entire sentence, and a series of embedding vectors, that
each represent one word of the input sentence with its con-
text. A 768-dimensional mean token vector can be created
out of this secondary output by applying an attention mask
to the series of tokens to combine them into a single one.
We use the mean-token output of the SBERT module over
the cls-token as our semantic embedding because it resulted
in a better performance. In the second step, the attribute
network (AN) transforms the semantic embeddings into se-
mantic features by mapping them into the 256-dimensional
visual feature space. Compared to its original form in [13],
we apply dropout with a factor of 0.5 to the first layer of this
multi layer perceptron (MLP).

Finally, the visual and semantic feature outputs are com-
bined by forming relation pairs. Each pair is a concatena-
tion of the visual features of our input sample with the se-
mantic features of one class. These relation pairs are then
fed into the relation network (RN) introduced in [13]. The
RN applies a similarity metric in order to assess the resem-
blance of the semantic and visual features within each rela-
tion pair. This way, it computes a similarity score for each
pair, which symbolizes the input sample’s similarity to the
corresponding class. Then, the similarity scores are com-
pared to a one-hot vector representing the ground truth class
using mean squared error (MSE) loss. In contrast to previ-
ous works, this architecture does not use a fixed similarity
metric. Instead, the RN is a MLP that learns a deep similar-
ity metric during training, which was introduced and shown
to improve performance in [13]. We add an additional lin-
ear layer to the RN and apply dropout to the first and second
layer with a factor of 0.5.

2.2. Data augmentation

In this section, we present three data augmentation methods
for the semantic embeddings of the default class labels pro-
vided by the dataset. We apply these methods directly to
the labels, because they are more tangible than the abstract
embeddings. This still results in an augmentation of the se-
mantic embeddings, since they are created from the labels.
The goal of these methods is to increase the visual infor-
mation content of the semantic embeddings of our gesture
classes in order to improve the classification performance.
To demonstrate them, we apply each augmentation to the
class with the default label ”squat down” as an example.

2.2.1 Descriptive labels

In a first step, we provide more visual information by sub-
stituting the class labels, which in their original form mostly
consist of one or two words, with a complete sentence. We
use sentences that give a more precise description of the
movements required to perform a particular gesture. This
way, the default label ”squat down” is manually augmented
to create the new descriptive label: ”A human crouches
down by bending their knees”. During training and test-
ing, every default label is replaced by its manually written
descriptive counterpart.

2.2.2 Multiple labels per class

We now increase the information content of the semantic
embeddings even further by labeling each gesture with sev-
eral different descriptions. Thus, we manually create addi-
tional descriptions that use different wording for each ges-
ture. An example of using three descriptive labels per class
is shown in Table 1. Since the network computes a similar-
ity score for each possible label, there are now three times
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1: A human crouches down by bending their knees.
2: A person is bending their legs to squat down.
3: Someone crouches down from a standing position.

Table 1. Three descriptive labels for the class ”squat down”.

Description: A human crouches down by
bending their knees.

Augmentation 1: A small human crouches duck
down by bending their knees.

Augmentation 2: A human crouches fall down
somewhat by bending their knees.

Table 2. Descriptive label and two automatic augmentations for
”squat down”.

as many similarity scores due to the expanded vocabulary.
In each iteration of the training process, the ground truth of
a sample is randomly selected from one of the three possi-
ble labels. During inference, all three possibilities are con-
sidered correct if the network predicts one of them for the
corresponding sample.

2.2.3 Automatic augmentation

To reduce the manual annotation effort, we now generate
additional labels automatically for the multiple labels ap-
proach. For this purpose, we use an augmenter from nlpaug
[8] with the RoBERTa language model [7] to insert words
into a manually created descriptive label. We do not use
word substitutions, since it is often impossible for the auto-
matic text augmentation to find multiple suitable synonyms
for specific words. Word deletions are also suboptimal, be-
cause removing key words leads to a sentence that does not
describe the given action appropriately. An example label
set is shown in table 2. One can see, that the reduced manual
annotation effort sometimes comes at the cost of generating
grammatically incorrect sentences.

2.3. Experiments

In this work, we use the NTU RGB+D 120 dataset [6],
which contains 3D skeleton data for 114,480 samples of 120
different human action classes. To evaluate our model we
pick a subset of 40 gestures classes to execute four perfor-
mance tests: one with the default labels as a baseline, and
one per augmentation method. A performance test consists
of eight training runs on 35/5 (seen/unseen) splits, which are
randomized in such a way that every single class is unseen
in exactly one training run.

During a training run, only the weights of the AN and
RN modules are adjusted. The visual feature extractor is
trained beforehand on the 80 unused classes of the NTU
dataset to ensure that the unseen gestures have not appeared

in the training process at some early stage. The SBERT
module has already been trained on large text corpora by
Sentence-Transformers [12].

We test the performance in two scenarios for each aug-
mentation method: In the ZSL scenario, the model only pre-
dicts on the unseen classes, while it predicts on all classes
(seen and unseen) in the GZSL scenario. In the latter we
measure the accuracy for seen and unseen samples, as well
as the harmonic mean, following recent works [3]. In each
scenario the results are averaged over the eight individual
training runs of a performance test. For default and descrip-
tive labels, we train our network with a batch size of 32, as
it was done in the original paper [13]. When using multi-
ple labels, we increase the batch size to 128 and add batch
normalization at the input of the RN.

3. Results

All our results are generated following the procedure de-
scribed in the experiments section. For the multiple labels
approach three manually created labels per class are used.
The automatic augmentation approach utilizes five labels:
one manually created label and four augmented versions.
In table 3 one can see the ZSL, seen and unseen accura-
cies, as well as the harmonic mean. Table 4 displays a more
detailed view of the achieved unseen accuracies. It shows
the top-1 and top-5 accuracies for our approaches with their
standard deviations (std) over the eight splits.

Improvements on the ZSL accuracy, the unseen accuracy
and the harmonic mean are achieved using the descriptive
labels. The accuracies increase even further with the mul-
tiple labels approach. Using automatic augmentation per-
forms worse compared to multiple manually created labels,
but it still constitutes a relative 23% increase over using only
one descriptive label.

The seen accuracy stays within the same range, only ex-
periencing a marginal increase for the two cases that use
multiple labels. This behaviour along with a decrease in
unseen accuracy is observed whenever batch normalization
is applied to any of our approaches. Therefore it is only
applied in the cases where multiple labels are used because
they require batch normalization in order for the training to
converge.

Table 4 shows that the top-5 accuracies behave similarly
to their top-1 counterparts, with the exception of a less se-
vere performance decrease when using automatic augmen-
tations. The standard deviations of the top-1 accuracies are
in the same range for all approaches based on the descrip-
tive labels. The standard deviation belonging to the top-5
accuracies decreases for the multiple label aproaches, which
indicates a higher prediction consistency.
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Augmentation ZSL Seen Unseen h
Baseline 0.4739 0.8116 0.1067 0.1877
Descriptive 0.5186 0.8104 0.1503 0.2495
Multiple 0.6558 0.8283 0.2182 0.3417
Automatic 0.5865 0.8290 0.1856 0.3003

Table 3. ZSL and GZSL results for different approaches.

Augmentation top-1± std top-5 ± std
Baseline 0.1067± 0.0246 0.5428± 0.0840
Descriptive 0.1503± 0.0553 0.6460± 0.1250
Multiple 0.2182 ± 0.0580 0.8580 ± 0.0657
Automatic 0.1856± 0.0499 0.8272± 0.0476

Table 4. Unseen top-1 and top-5 accuracies (GZSL).

3.1. Discussion

3.1.1 From default to descriptive labels

The improvement from the use of descriptive labels shows
that incorporating more visual information into the seman-
tic embeddings helps the network to find a general relation
between the semantic and the visual space. Plainly speak-
ing the network can find more similarities between the class
labels. This is important since the expected visual features
of an unseen class are determined based on the similarities
between its label and the seen labels. One might expect
these similarities to also be present in the embeddings of
the default labels because SBERT should be able to gen-
erate representative embeddings that share characteristics
with similar classes. While such similarities are present in
the SBERT embeddings, they are not focused on the visual
appearance of the gestures. For example, the embeddings
of the class labels ”sit down” and ”drink water” might be
somewhat similar, because those words appear together fre-
quently in the large text corpora that SBERT was trained on.
Visually however, those classes look vastly different from
each other. The embeddings falsely suggest, that a similar-
ity between the classes is there, which is less likely to hap-
pen if the embeddings are created from visual descriptions
of the actions.

3.1.2 Using multiple labels

When using multiple labels, the idea is somewhat differ-
ent. The main motivation is that using larger amounts of
data is generally a good idea. Here, the descriptions and
therefore the embeddings of each sample are chosen ran-
domly among the three possibilities during training. This
forces the network to assign a high similarity to all three la-
bels corresponding to a sample, which leads to a more gen-
eral mapping between the semantic and the visual feature
space. The model has to adapt to the greater diversity of the

used semantic embeddings. This improved generalization
on seen training data then helps the network understand and
therefore classify the unseen samples better.

For the methods using multiple labels per class, the batch
size during training is increased from 32 to 128. Since the
network needs to learn a mapping for a greater amount of
classes, increasing the batch size is necessary to find rela-
tions between more classes at once. Increasing the batch
size does not benefit the single label approaches.

3.1.3 Automatic augmentation

The individual labels for a class are very similar when us-
ing automatic augmentation compared to multiple manu-
ally created labels, since only a few additional words are
inserted for each version. The diversity in the semantic
embeddings is therefore less pronounced, which leads to a
worse performance. However, compared to the single la-
bels, where the semantic embeddings contain no diversity,
the performance is significantly better.

If diversifying the semantic embeddings is the key to im-
proving the performance, one might expect, that generating
the additional embeddings by adding random noise to a sin-
gle embedding could also work. This would obviate the
need for a text augmentation module. However, this method
does not improve the performance compared to the single
label approach when tested on our model. This shows that a
specific kind of diversity is needed to get an improvement.
Using word insertions clearly provides a suitable diversity,
since there is an improvement despite the resulting gram-
matical errors described in section 2.

4. Conclusion
In this work, we demonstrate the potential of applying data
augmentation to the semantic embeddings of a Zero-Shot
gesture recognition model. By including more visual infor-
mation in the class labels and combining multiple descrip-
tions per class we are able to improve the performance of a
model based on [4] by a significant margin. The use of auto-
matic text augmentation still leads to a sizable performance
gain, while keeping the manual annotation effort low.

Future works might further investigate the following top-
ics: Firstly, generating descriptive sentences from the de-
fault labels, e.g. by using methods from Natural Language
Processing (NLP), would further reduce the manual anno-
tation effort. Secondly, our methods could be tested on dif-
ferent Zero-Shot architectures to verify our improvements.
Finally, different kinds or combinations of automatic text
augmentation methods could be evaluated.

With these advances, data augmentation of the semantic
embeddings in Zero-Shot learning can prove useful in op-
timizing the performance of any Zero-Shot approach in the
future.
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