

Gender Classification

Thomas Witzig Master student

Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany Institute for Anthropomatics, Computer Vision for Human-Computer Interaction Lab

www.kit.edu

Motivation

Distinguish between male or female?

- Body shape
- Hair style
- Vocal tone
- Facial features

Conclusion

Previous approaches

 \rangle

 Σ

Motivation

Karlsruhe Institute of Technology (KIT)

Motivation

- Area of application
 - Directly only few possibilities
 - demographic data collection
 - gender-based personalized advertising

Indirect

Pre-processing step in face recognition

 Σ

 \rightarrow increase classification accuracy

http://en.wikipedia.org/wiki/File:Red_High_Heel_Pumps.jpg http://www.hoepfner.de/marketing/grafikvorlagen/Kisten_pdf/Pilsner_0,5.pdf

Previous approaches

The quite different approach

📡 Eva

Conclusion

Karlsruhe Institute of Technology (KIT)

Previous approaches

- Previous approaches in gender classification
 - \rightarrow Combinations of different features and classification algorithms
- Feature input:
 - directly
 - Transformation (e.g. Gabor wavelets)
 - Local features (Local Binary Patterns, SIFT)
- Dimension reduction:
 - Principal Component Analysis
 - Linear Discriminant Analysis
- Classification
 - Support Vector Machines
 - Neural Networks
 - Adaboost

Previous approaches

- Input: frontal faces through preprocessing
- => ideal case results

No direct classification from arbitrary viewpoints and under occlusions

- Matthew Toews and Tal Arbel* present:
 - Robust detecting, localizing and classifying in one common framework
 - Classifying different visual traits (e.g. sex, age, brain anatomy)
 - From arbitrary viewpoints
 - Under Occlusion
 - No need for 3D modeling
 - No need for training images from different viewpoints
- \rightarrow can be used in realistic scenarios

Karlsruhe Institute of Technology (KIT)

General structure of the framework

Karlsruhe Institute of Technology (KIT)

Example for classifying sex of persons in a cluttered image:

Source: Toews, Matthew and Arbel, Tal (2009): Detection and Localization, and Sex Classification of Faces from Arbitrary Viewpoints and under Occlusion

Karlsruhe Institute of Technology (KIT)

What is an OCI Model?

9

relates scale-invariant features to an OCI

Bayesian classifier for gender classification

$$\log \psi(c) = \log \frac{p(c)}{p(\bar{c})} + \sum_{i}^{M} \log \frac{p(f_i|c)}{p(f_i|\bar{c})}$$
(1)
(2)

- (1) Ratio of trait value presence c versus absence
- (2) Likelihood ratio of trait presence c versus absence coinciding with observed features fi
- \rightarrow Optimal Bayesian classifier by choosing c which maximizes the term
- → Threshold ψ^* decides if male or female

Evaluation

Institute for Anthropomatics

Classification results for the framework

Classification results from framework based on three different sets of training data, remaining images are used for testing:

Training test size	classification EER
100	28%
200	21%
300	19%
400	18.5%
500	16.3%

Classification results from framework based on three ranges of face viewpoints with 500 training images:

Viewpoint range	mean EER
$0^{\circ} - 22^{\circ}$	11.9%
$22^{\circ} - 67^{\circ}$	15.6%
$67^{\circ} - 90^{\circ}$	19.9%

Source: Toews, Matthew and Arbel, Tal (2009): Detection and Localization, and Sex Classification of Faces from Arbitrary Viewpoints and under Occlusion

Evaluation

Comparison to other approaches (based on FERET images)

Classification results from other approaches for FERET images with normalization when a separate set of FERET images was used for training.

Method	Average EER %
Neural network	8.99
SVM	14.55
Threshold Adaboost	16.66
LUT Adaboost	8.99
Mean Adaboost	10.83
LBP + SVM	13.72
Average	11.43

Classification results from new framework based on three ranges of face viewpoints with 500 training images:

Viewpoint range	mean EER
$0^{\circ} - 22^{\circ}$	11.9%
$22^{\circ} - 67^{\circ}$	15.6%
$67^{\circ} - 90^{\circ}$	19.9%

Left image: Mäkinen (2008), Erno and Raisamo, Roope, An experimental comparison of gender classification methods Right image: Toews, Matthew and Arbel, Tal (2009): Detection and Localization, and Sex Classification of Faces from Arbitrary Viewpoints and under Occlusion

Evaluation

- Advantages of the novel approach
 - Detecting, localizing, classifying in one common framework
 - From arbitrary viewpoints
 - Under occlusion
 - No 3D modelling or images from multiple viewpoints in training needed
 - Used for other visual traits (e.g. Age, brain anatomy)

Disadvantages

- No overhead or underhead views
- Exploits symmetry of faces
- Identifying instances of the same class but not : between different instances of the same object

Karlsruhe Institute of Technology

Conclusion

- Lessons learned:
 - Why do we need gender classification?
 - What are previous approaches in this research field?
 - What is the new approach from Toews and Arbel?
 - How are the classification results?

Discussion

- Questions?
- Other equivalent approaches comes in mind?
- Are there following papers from Toewn and Arbel? Content?
- Is manually labelling OCI practicable?
- Using body shape for classification?

Thanks for your attention!