

Practical Course: Computer Vision for Human-Computer Interaction

SS 21 Constantin Seibold

COMPUTER VISION FOR HUMAN COMPUTER INTERACTION LAB INSTITUTE FOR ANTHROPOMATICS AND ROBOTICS

What will you learn?

- Apply algorithms from lectures and papers
- Hands on experience
- Get comfortable with machine learning tools

Constantin Seibold-

Learn about common problems and applications in machine learning & vision

Practical Course Computer Vision for Human-Computer Interaction

Find solutions to difficult problems

Example Of Last Semester

Constantin Seibold-

Practical Course Computer Vision for Human-Computer Interaction

Human Drone Interaction

General Information

Weekly meeting

- Compulsory attendance
- Talk about intermediate results & problems

Constantin Seibold-

- Ask for help and guidance
- Weekly goal: stay "on track"

3 Students per Team

- Use version control (e.g. git)
- Internal git repos provided via the SCC's GitLab (https://git.scc.kit.edu/)

Practical Course Computer Vision for Human-Computer Interaction

Divide work into separate tasks and distribute within group

At the end of the Practical Course...

- Final presentation of each group
 - 15 Minute talk
 - Each member talks about their contribution
 - The presentation should be about:
 - Goals and usefulness of your chosen topic
 - Your proposed approach
 - Results
- Written report describing the topic/approach/results
 - 4-pages in standard paper format
 - Abstract/Introduction/Method/Results/Conclusion
 - References can be fit on an extra page
 - Written in a conference paper template
 - http://cvpr2020.thecvf.com/sites/default/files/2019-09/cvpr2020AuthorKit.zip
- Final Code Submission
 - Working implementations of Algorithms

Constantin Seibold-

A Readme-file describing how the code can be used to reproduce the results

Practical Course Computer Vision for Human-Computer Interaction

If the team agrees -> make code publicly available to the community

Topics

- Walkable Path Discovery Utilizing Drones
- Image Analysis of Structured Visual Content
- Zero-Shot Action Recognition
- Anomaly Detection in Construction Sites

Constantin Seibold-

Walkable Path Discovery Utilizing Drones

Dynamically integrate drone usage into daily life

Constantin Seibold-

- Assist for visually impaired
- **Drone-assisted filming**
- Criteria:
 - Person following
 - Obstacle avoidance
 - Traffic orientation

Avila, Mauro, Markus Funk, and Niels Henze. "Dronenavigator: Using drones for navigating visually impaired persons." Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility. 2015.

Walkable Path Discovery Utilizing Drones

- Potential datasets
 - Datasets including sidewalks
 - Cityscapes
 - Mapillary
 - Vistas
 - https://github.com/gweawg/Blind-road-and-crosswalk-dataset

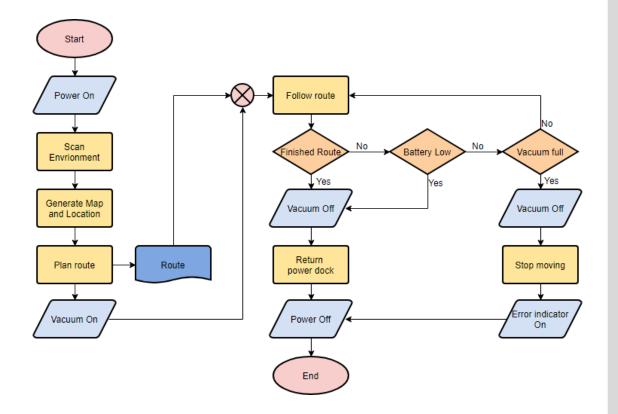
- You will use the Parrot ANAFI or Dji Tello
 - Camera, WiFi-Connector, Remote Controller

Constantin Seibold-

- Light-weight
- Development using **dronekit-python** (https://github.com/dronekit/dronekit-python)

- Working within drone regulations
 - https://www.bmvi.de/SharedDocs/DE/Publikationen/LF/flyer-die-neue-drohnen-verordnung.pdf? blob=publicationFile

Image Analysis of Structured Visual Content

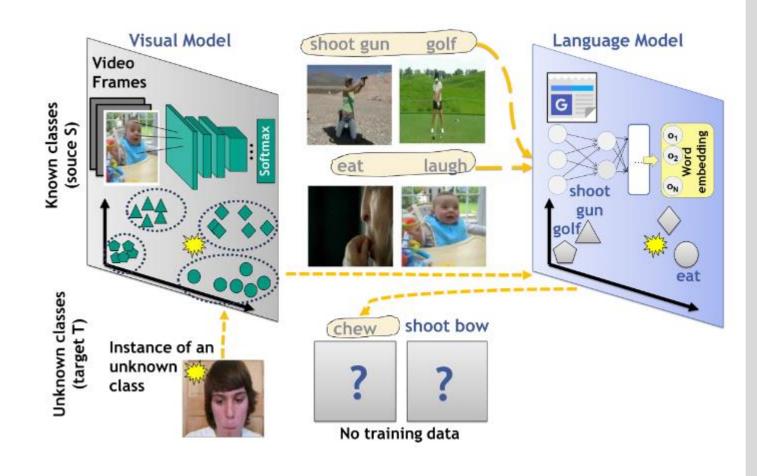

Practical Course Computer Vision for Human-Computer Interaction

- Extracting information from structured visual content is a non
- Employ deep learning methods for automated extraction of information

Constantin Seibold-

- Topics:
 - **Document Segmentation**
 - **Graph Neural networks**

- Dataset:
 - Internal manually annotated dataset utilizing DISKNET
 - Containing images with paired graph representations
 - 579 papers, 4705 constructs and 7653 relations



Zero-Shot Action Recognition

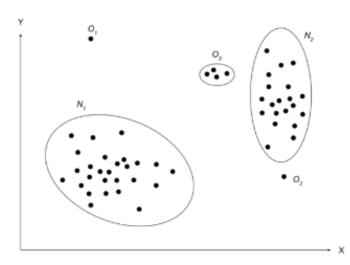
Given a video classify the occurring action despite the action not appearing in the training data

- Link visual and semantic representations
 - Word embeddings
 - Textual descriptions
 - **Attributes**

Zero-Shot Action Recognition

Constantin Seibold-

- **Usable Datasets:**
 - HMDB51
 - **UCF101**
 - ActivityNet
 - Kinetics 400/700


Anomaly Detection in Construction Sites

- Given an image of the construction site scene
 - Detect technical problems in parts of the image (scratches, cracks, flakes)
- Problem formulated as anomaly detection
 - Identify which parts of the image appear as outlier/faulty compared to the underlying distribution of unimpaired image regions

Anomaly Detection in Construction Sites

- **Usable Datasets:**
 - ADE20K (S) (https://groups.csail.mit.edu/vision/datasets/ADE20K/)
 - COCO-Stuff (S,D) (https://github.com/nightrome/cocostuff)
 - Internal construction site dataset

Evaluation using real life construction site images

Topic Selection

- Find a team of three people
- Each team sends us
 - A ranking of their preferred three topics
 - until 18th 23:59 of April
 - per Email at constantin.seibold@kit.edu
- Scenarios
 - Re-Implement not publicly available model from paper
 - Change publicly available model by trying out parameters/losses

Practical Course Computer Vision for Human-Computer Interaction

Fuse two different architectures in some way

Constantin Seibold-

Use existing model for a novel task

Create a Plan

- Check related work
 - What has been done in this topic specifically?
 - What has been done for the overarching task?
 - What pretrained models do exist?
 - What datasets do exist?
- How can you use related work for your task?
- Who focuses on what?
- Create a rough schedule for how you approach your task

Implementation

- Choose Framework
 - **TensorFlow**, see tutorial https://www.tensorflow.org/tutorials
 - **PyTorch**, see tutorial https://pytorch.org/tutorials/
 - Torch, Theano, Caffe
- Each team can use an 8GB GPU on our servers
- Plot learning curves/results and show at weekly meeting

Practical Course Computer Vision for Human-Computer Interaction

Split work equally between team members

Constantin Seibold-

Evaluation

- Split Dataset into distinct training, validation and test set
- Use training and validation to tune your model
- The test set is used at the very end
- Check out metrics in related work
 - Classification: Accuracy
 - Detection: mAP
 - Segmentation: mIOU
- If your project requires a user study, check in related work how similar studies are performed

Presentation

- 15min Presentation per Team
- Explain your topic, approach and results

Constantin Seibold-

- If applicable, a demo/video would be appreciated
- Allocate enough time for each team member to talk about their contributions

- What if your solution does not work?
 - No problem at all.
 - A presentation showing your development and why it didn't work is perfectly acceptable as well

Organization

- Select teams of 3 students each
- Meeting schedule
- Week 0 [12.04.21]: Introduction
- Week 1: Present ideas on how to approach the problem
- Week 2: Read related work and consider how to incorporate these into your task
- Week 3: Implementation
- Week 13 [19.07.21]: Presentations
- Weekly meeting for discussion and status updates with corresponding supervisor
 - Set a consistent date for weekly meetings

Constantin Seibold-

- Register Projektpraktikum with KIT's Studienbüro...(Modulhandbuch Nummer #7500279, Teilleistung #T-INFO-110325)
- For these slides, other information, announcements and updates \rightarrow check website [coursemember/321meins]