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ABSTRACT
In this paper, we discuss the challenges for facial expres-
sion analysis in the wild. We studied the problems exem-
plarily on the Emotion Recognition in the Wild Challenge
2013 [3] dataset. We performed extensive experiments on
this dataset comparing different approaches for face align-
ment, face representation, and classification, as well as hu-
man performance. It turns out that under close-to-real con-
ditions, especially with co-occurring speech, it is hard even
for humans to assign emotion labels to clips when only tak-
ing video into account. Our experiments on automatic emo-
tion classification achieved at best a correct classification
rate of 29.81% on the test set using Gabor features and
linear support vector machines, which were trained on web
images. This result is 7.06% better than the official baseline,
which additionally incorporates time information.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications; I.4.m [IMAGE
PROCESSING AND COMPUTER VISION]: Miscel-
laneous

Keywords
Facial Expression; Emotion; EmotiW; DCT; LBP; Gabor;
FACS; SVM

1. INTRODUCTION
Facial expression analysis is a popular topic, which at-

tracts more and more interest. Research on it already goes
back to more than two decades [7, 13, 20, 23]. However, a
lot of studies are still using posed or at least lab data for
experiments. One of the main reasons for this is that it
is hard and time consuming to collect and annotate realis-
tic data. But for real applications one needs a system which
can cope with spontaneous expressions, which involve differ-
ent facial muscles and show different dynamics compared to
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posed expressions [1]. One step towards more realistic data
and evaluations was taken by the FG 2011 Facial Expression
Recognition and Analysis Challenge (FERA2011) [21, 22].
Nevertheless, the data used in that challenge was still col-
lected in a lab setting with relatively frontal faces, since the
actors interacted towards the camera. Recently, the Acted
Facial Expression in the Wild (AFEW) dataset [4] has been
published, which targets to fill this gap in the datasets. It
is a collection of clips from movies with labels of seven basic
emotions (anger, disgust, fear, happy, neutral, sad, surprise).
As such, it resembles close-to-real conditions in terms of
emotional colored sequences. Even though the name of the
database suggests that it is focusing on facial expressions,
the clips also contain audio tracks and due to the setting also
visual context knowledge, which aids in the decision of the
appropriate emotion. This dataset contains realistic chal-
lenges like different illumination conditions, occlusion, pose
variations, relative spontaneous emotional expressions. Sub-
sets of the AFEW dataset are used in the Emotion Recogni-
tion in the Wild Challenge (EmotiW2013) [3] to provide a
common benchmark for comparison of approaches targeting
facial expression analysis in the wild.

In this study, we analyze a diverse set of face alignment
methods, face representations, and classifiers for their us-
ability in emotion classification on close-to-real data. In
terms of face alignment, we compare eye-based alignment
to fiducial point warping based on a mixture-of-parts (MoP)
model. The face representations we looked at are block-
based discrete cosine transform (DCT) [5], local binary pat-
terns (LBP) [12], Gabor, Gabor DCT (GDCT), and facial
action unit (AU) intensities [6]. Finally, for classifying the
emotions we selected a nearest neighbor (NN) based clas-
sifier, a nearest mean (NM) based classifier, and 1-versus-
1 multi-class support vector machines (SVMs) with linear,
second-order polynomial, and RBF kernels. Additionally,
we did human evaluations to determine the difficulty of the
task for humans, when they use only the video track to base
their decision on.

The content of the paper is organized as follows. We will
present the methods we selected for the different stages of
automatic facial expression analysis, i.e. face alignment,
face representations, and finally the classifiers in Section 2.
The used dataset will be described in Section 3, followed
by the experimental section in Section 4, where we studied
the influence of face alignment, face representation, head
orientation, classifiers, and training data, as well as human
performance and how the automatic approaches perform on



a human agreed subset. Finally, in Section 5 we will give
conclusions and suggestions for possibilities about how to
improve evaluations on such realistic data.

2. METHODOLOGY
The general approach to automatic facial expression anal-

ysis consists of multiple stages in the processing. First a face
is detected and aligned to some reference, then a compact
face representation is derived, and finally the corresponding
emotion is estimated using a classifier. In following subsec-
tions, we describe the methods we selected in this work for
comparison within the individual stages.

2.1 Face Alignment
We investigated two alignment methods, a simple eye-

based alignment [8] and a fiducial points based warping [24],
as provided by the organizers of the EmotiW2013 challenge.

The process for the eye-based alignment is as described
by Gehrig and Ekenel in [8]. First, a modified census trans-
form (MCT)-based face detector is used to detect faces [10].
Since that detector is trained on frontal faces, this already
reduces the number of frames to the ones showing almost
frontal faces. The next step is detecting eyes using a MCT-
based eye detector. The processing continues only if both
eyes were found. Using these eye locations the face image
is scaled and rotated such that the eyes are always located
at a predefined position in the aligned face, i.e. with a fixed
interocular distance, on a specific row of the cropped image.
For the fiducial points based alignment, the aligned face im-
ages provided by the EmotiW 2013 Challenge organizers are
used. These are based on a mixture-of-parts (MoP) based
face and fiducial points detector [24]. For the alignment
based on the detected fiducial points, an affine transform,
followed by warping, using the Matlab functions cp2tform

and imtransform, was applied.

2.2 Face Representation
We compare five different kind of face representations:

block-based discrete cosine transform (DCT) [5], local bi-
nary patterns (LBP) [12], Gabor, Gabor DCT (GDCT), and
facial action unit (AU) intensities [6].

For the block-based DCT, we do the processing as pro-
posed by Gehrig and Ekenel [8]. First, the aligned face im-
age is divided into non-overlapping blocks of N ×N pixels.
Then, each block is transformed using a two-dimensional
type-II DCT. The DCT coefficients are extracted using zig-
zag scanning and only the first few are kept for further pro-
cessing. Finally, the block coefficients are normalized by
dividing each coefficient by its standard deviation, followed
by a normalization of the resulting block feature vector to
unit norm. The feature vector for the whole face is formed
by concatenating all the block feature vectors.

When using the LBP-based face representation, the aligned
image is first transformed using a uniform LBP operator.
Then, the transformed image is split into non-overlapping
blocks of size N × N . Finally, a histogram over the dis-
tribution of the LBP codes in each block is calculated and
appended to the final feature vector, similar to the one in
Shan et al. [17].

The face representation using Gabor filters is performed
similarly to the one proposed by Richter et al. [14]. First,
the aligned image is filtered using a bank of Gabor filter
with n orientations and m scales of which only the magni-

tude is used in the further processing. Then, the individual
magnitude responses are downscaled by a specific factor a to
decrease the feature dimensionality. Finally, all the down-
scaled responses are concatenated to one big feature vector.

The GDCT based face representation is a novel approach.
It is basically consecutively applying the Gabor face repre-
sentation without the downscaling and then the block-based
DCT. This makes it possible to use the full sized Gabor mag-
nitude responses, but at the same time compressing them.

The AU intensity features are based on the definitions in
the facial action coding system (FACS) proposed by Ekman
and Friesen [6] and allow an objective description of facial
expressions closely related to facial muscle activations. Here,
we estimate them using an approach based on the AU detec-
tion framework proposed by Gehrig and Ekenel in [9]. This
framework uses partial least squares (PLS) to detect the ac-
tivation of different AUs. We extended that to AU intensity
estimation by using the FACS intensity labels instead of the
binary activation labels to train a model. This model was
then used to determine the AU intensities for the individual
frames. Using AU intensities for the estimation of the emo-
tion of less constrained sequences was already proposed by
Littlewort et al. [11], but they used a more complex feature
vector containing multiple statistical moments over time to
incorporate dynamic information as well as head pose re-
lated information.

2.3 Classification
In this work, we compared several approaches for the clas-

sification of the seven basic facial expressions from emo-
tions (angry, disgust, fear, happy, neutral, sad, and sur-
prise). We selected a nearest neighbor (NN) classifier, a
nearest mean (NM) based classifier, and 1-versus-1 SVMs
with linear, second-order polynomial, and RBF kernels. Be-
fore the actual training or classification takes place for the
NN and SVM classifiers the feature vectors are normalized
to be zero-mean and have unit variance.

The NN classifier simply uses the L2 distance between the
features of the test samples and the ones from the training
set to determine the emotion for a given test frame. To
determine the emotion for a whole clip the distances to the
nearest neighbor per class are accumulated over all frames
of a clip and the class with the lowest sum is chosen as the
estimate for that clip.

In case of the NM based classifier, for each class the mean
and the covariance of the feature vectors over all frames of
the sequences belonging to that class is calculated. On test-
ing, the feature vectors over all frames of a clip are averaged.
This clip average feature vector is then used to calculate the
Mahalanobis distance to all the classes. And again, the emo-
tion for which this distance is the smallest is selected as the
estimate for that clip.

For the SVM, we used the 1-versus-1 multi-class imple-
mentation provided by LIBSVM [2]. The classifiers were
trained on all frames of a sequence of the corresponding
class. Similar to the NN based classifier, on estimating the
emotion of a clip, the confidences per class are accumulated
over all frames of a sequence and the class with the maxi-
mum accumulated confidence is selected as the estimate for
that clip. The confidence of a class is determined as the
normalized number of 1-versus-1 classifiers, which vote for
that class.



Table 1: Statistics of the training partition of
EmotiW2013
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Angry 35 58 55 19 39 3379 1740
Disgust 27 40 38 28 12 2699 1945
Fear 20 50 45 26 24 2838 1645

Happy 41 65 62 41 24 3807 2673
Neutral 29 63 60 41 22 3910 2530
Sad 28 52 50 18 34 3173 2091

Surprise 26 52 49 29 23 2876 1542
Total 99 380 359 202 178 22682 14166

Table 2: Statistics of the validation partition of
EmotiW2013

# clips # frames

class S
u
b
je
c
t
s

o
v
e
r
a
ll

w
it
h

e
y
e
s

fr
o
n
t
a
l

n
o
n
-f
r
o
n
t
a
l

o
v
e
r
a
ll

w
it
h

e
y
e
s

Angry 36 59 54 22 37 3614 2048
Disgust 33 50 50 19 31 3460 2479
Fear 38 54 51 22 32 2661 1549

Happy 33 62 60 35 27 3432 2189
Neutral 30 55 51 33 22 3055 2255
Sad 32 64 56 19 45 3729 2219

Surprise 35 52 50 20 32 2731 1725
Total 126 396 372 170 226 22682 14464

3. DATASET
In this work, we use the Emotion Recognition in the Wild

Challenge (EmotiW2013) dataset [3]. This dataset is based
on the previously released Acted Facial Expression in the
Wild (AFEW) dataset [4]. This dataset is a collection of
clips selected from 75 movies. It was collected using a semi-
automatic process, in which first the subtitles were extracted
from the DVDs as well as downloaded from the internet.
These were then searched for specific keywords related to
the 7 basic emotions (angry, disgust, fear, happy, neutral,
sad, and surprise). The corresponding clips were then ex-
tracted based on the timing information of the correspond-
ing subtitle, and the human annotator labeled the subject
and expression displayed in the clip. These clips were then
filtered for those where only a single subject occurs. This
resulted in 1832 video clips for the AFEW 3.0 dataset of
which 1088 were used for the EmotiW2013 challenge. For
evaluation purposes, this set was split into training (Train),
validation (Val), and testing (Test) sets containing 380, 396,
and 312 clips, respectively. More detailed statistics about
the Train and Val sets are presented in Table 1 and Table 2.
The tables include the numbers for the case where only the
part is used for which eyes were detected.

4. EXPERIMENTS
In the following, we present the experiments we performed

on the EmotiW2013 dataset.

4.1 Influence of Face Alignment
The first experiment consists of comparing the influence of

the face alignment method on the correct classification rate.
As stated in Section 2.1, we compare here a simple eye-based
alignment [8] and a fiducial points based warping [24]. For
the eye-based alignment, we use an eye distance of 31 pixels
and the 26th row for positioning the eyes in 64×80 crop-
outs, and the appropriate multiples (1.5× and 2× of the eye
distance and the eye row) for 96×120 and 128×160 crop-
outs. For the fiducial points based warping, we downscaled
the provided aligned images to 64×80. We compared the
two approaches using a 1-versus-1 SVM for the classification.
The features were either extracted using block-based DCT
features or Gabor magnitude filters. For the block-based
DCT, we used non-overlapping blocks of size 8× 8 and kept
the first 10 coefficients for each block. For the Gabor filters,
we used 8 scales, 5 orientations and downscaled the filtered
images by a factor of 8.

The results for the comparison of the two face alignment
approaches using different kind of features is presented in
Table 3. When using DCT, using the MoP alignment is
1.26% better than the eye-based alignment. But compar-
ing the two approaches directly is not really fair, since the
MoP based alignment has almost for all frames of the clips
aligned faces, while the eye-based alignment is only available
for almost half of the frames. Thus, the classifier has more
samples available in the case of MoP and might therefore
generalize better. For that reason, we also compared using
the MoP alignment for only those frames for which there
is also an eye-based alignment available. In this case, both
alignments perform equally well, when looking at the overall
classification rate. When looking at the individual perfor-
mances, it seems like those emotions, which are mostly visi-
ble through changes in the mouth region, i.e. disgust, happy,
and surprise, are better estimated using MoP, because the
mouth region is not at all directly aligned using the eye-
based alignment. The average per class classification rate
is slightly better here for MoP (19.46% for eye vs. 19.34%
for MoP). Strangely, when using Gabor features the perfor-
mance drops by 3.33% for the MoP based alignment. Even
when using the original size of the provided MoP aligned
face images with size 143×181, instead of 64×80, the per-
formance stays below that of the eye-based alignment.

To get a glimpse of the goodness of the alignment, we
calculated the mean faces over the sequences for both align-
ments. Some examples are shown in Figure 1. Here, we also
see that the overall mouth region seems to be less blurry in
case of MoP (reduced). One can see that the mean faces
for the MoP alignment are more blurry, which suggests that
also the alignment for MoP is noisy. Actually, another rea-
son might be that MoP also detected sometimes non-faces
or other faces, which might add to the blur. Thus, if we go
back to the results in Table 3, it seems like DCT is better
capable of coping with alignment noise than Gabor, since for
DCT, eye-based alignment and MoP lead to more or less the
same overall results. But Gabor gains quite a lot in terms
of performance by using the eye-based alignment. So in this
case the overall alignment wins over the local facial parts
alignment.

4.2 Influence of Face Representation
We already saw in the previous experiment that using Ga-

bor features improves the overall classification performance.
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Figure 1: Mean faces for some clips from the val-
idation set of EmotiW2013 using eye-based affine
alignment or fiducial point based warping. The clips
are from the movies “Remember Me”, “21”, “Friends
With Benefit”, and “Hall Pass”, respectively.

Thus, we investigate here also other face representations to
see how well they perform on the wild data. For that we
chose DCT, LBP, Gabor and GDCT. For DCT and Gabor,
we used the same settings as in the previous subsection. For
LBP, we used a radius of 2 pixels and 8 neighboring pixels
per uniform LBP operator. We extracted blocks of 16×20,
24×30, or 32×40 pixels depending on the face resolution,
such that the blocks are arranged in a 4×4 grid. For the
bank of Gabor filters in the GDCT face representation, we
also used 8 orientations and 5 scales, but for the DCT part,
we skipped the first coefficient of each block and only used
the following 5 coefficients. We did not normalize the coef-
ficients per block using the standard deviation.

The result of the comparison is presented in Table 4. Again,
we observe that Gabor features outperform the other face
representations. LBP and GDCT are in the middle field.
Using a face resolution of 96×120 improves the performance
over 64×80 and 128×160 for Gabor, LBP and DCT.

4.3 Influence of frontal vs. non-frontal faces
To determine how well a specific face alignment method

and face representation works across poses, we evaluated the
results on just the subset of the validation set with frontal
faces, respectively non-frontal faces. The results on 64×80
faces are shown in Table 5. As expected, the overall results
for the frontal subset are generally better than those for
the non-frontal subset. But for classes like angry and sad,
for which there are more non-frontal clips available in the
training set, the performance is almost consistently better
for non-frontal clips. When comparing again the face align-
ment methods, it seems that using DCT, it does not matter
much on average which pose the test faces have as long as
they are detectable. But here, the fiducial point warping
(MoP-reduced) works much better on frontal clips. In case
of LBP and Gabor, the performance drops quite a lot from
frontal to non-frontal when using the eye-based alignment.
For Gabor, the performance drop is not as huge for MoP-
reduced compared to the eye-based alignment. But on the
other hand, it does not reach the performance for frontal
faces as with the eye-based alignment. This is also visible in
the example mean faces in Figure 1, since for frontal faces, it
is more blurry compared to the eye-based alignment, while

Figure 2: Overlayed plot of mean AU intensity esti-
mates per class on the training set of EmotiW2013
normalized by the overall mean.

it is the other way around for the non-profile face. This is
also due to the fact that the eye detector is trained solely
on frontal eyes and thus begins to jitter as the pose changes
from frontal to non-frontal.

4.4 Comparison of various classifiers
Until now, we only used linear 1-versus-1 SVMs for the

classification. Here, we now compare different approaches.
We selected a nearest neighbor (NN) classifier, a nearest
mean (NM) classifier on top of action unit (AU) intensity
estimates, and 1-versus-1 SVMs with linear, second-order
polynomial, and RBF kernels. Here, we only tested the NN
classifier for DCT features. The parameters for the SVM and
the kernels were estimated using a 5-fold cross validation on
folds which ensured that frames of the same subject end up
in only one fold. For this parameter estimation, the slack pa-
rameter C = 2k was determined in the range k = −10, . . . , 0.
The γ = 2l for the RBF kernel was searched for in the range
l = −16, . . . ,−7. Finally, for the polynomial kernel we used
an offset of 1.0.

The AU intensity estimator used as input to the NM clas-
sifier is trained on the Bosphorus database [15, 16]. This
model was then used to determine the AU intensities for
the individual frames of the training and validation set of
the EmotiW2013 dataset, which were then used as feature
input for the NM classifier. In Figure 2, the means calcu-
lated per class over all frames of the sequences belonging to
that class and normalized by the overall mean are visual-
ized for the training set. Here, one can see that the mean
already reflects somewhat the FACS definition of the proto-
typic expressions, e.g. Angry has maximum peaks for AU4
and AU24, Disgust has a maximum peak for AU9, Fear has
maximum peaks for AU1 and AU4, Happy has maximum
peaks for AU12 and AU6, Sad has a maximum peak for
AU15, and Surprise has maximum peaks for AU26 and AU2
and the second highest peak for AU1.

The results for these different approaches on 64×80 faces
and the official video-only baseline results using LBP-TOP
and RBF SVM are presented in Table 6. RBF SVM seems
to give an improvement for DCT over its linear variant, but
not in case of Gabor. This might be due to the higher di-
mensional Gabor features (3200) and the comparatively low
number of samples per class to generalize enough. Whereas
for DCT the dimensionality is much lower (800) and there-
fore there are also enough samples to give a better gener-
alization. Using a polynomial kernel improves even more
for the DCT features compared to the RBF kernel, but for
Gabor it only improves over a RBF but not a linear kernel.
The NN classifier gives the worst performance. Surprisingly,



Table 3: Comparison of correct classification rates (in %) for eye-based alignment (eye) versus mixture-of-
parts based alignment (MoP) and MoP alignment for only frames with valid eye detections (MoP-reduced)
for DCT and Gabor features.

Features Alignment Angry Disgust Fear Happy Neutral Sad Surprise Overall

eye 27.12 2.00 20.37 41.94 21.82 12.50 9.62 19.95
DCT MoP 32.20 10.00 7.41 40.32 18.18 12.50 25.00 21.21

MoP (reduced) 28.81 10.00 12.96 50.00 10.91 6.25 17.31 19.95
eye 30.51 20.00 14.81 53.23 23.64 10.94 15.38 24.49

Gabor MoP 25.42 14.00 16.67 41.94 14.55 17.19 13.46 20.96
MoP (reduced) 32.20 14.00 12.96 53.23 27.27 17.19 17.31 25.51

Table 4: Comparison of correct classification rates (in %) for various face representations using lin. SVMs
Features Resolution Angry Disgust Fear Happy Neutral Sad Surprise Overall

DCT
64×80 27.12 2.00 20.37 41.94 21.82 12.50 9.62 19.95
96×120 38.98 4.00 12.96 46.77 21.82 10.94 19.23 22.73
128×160 30.51 4.00 14.81 46.77 16.36 10.94 7.69 19.44

LBP
64×80 30.51 10.00 18.52 46.77 23.64 14.06 21.15 23.99
96×120 38.98 6.00 20.37 48.39 23.64 12.50 23.08 25.25
128×160 28.81 12.00 24.07 41.94 16.36 10.94 19.23 22.22

Gabor
64×80 30.51 20.00 14.81 53.23 23.64 10.94 15.38 24.49
96×120 44.07 32.00 9.26 48.39 16.36 15.63 15.38 26.26
128×160 40.68 28.00 18.52 48.39 16.36 15.63 5.77 25.25

GDCT 64×80 37.29 8.00 12.96 56.45 18.18 9.38 19.23 23.74

Table 5: Correct classification rates (in %) for the frontal and non-frontal clips of the validation set
Pose Features Alignment Angry Disgust Fear Happy Neutral Sad Surprise Overall

fr
o
n
ta

l

DCT
eye 22.73 0.00 18.18 51.43 21.21 0.00 5.00 20.59

MoP 18.18 5.26 9.09 45.71 27.27 15.79 20.00 22.94
MoP-reduced 18.18 15.79 18.18 57.14 12.12 5.26 15.00 22.94

LBP eye 27.27 10.53 27.27 48.57 33.33 10.53 15.00 27.65

Gabor
eye 36.36 26.32 18.18 51.43 30.30 10.53 20.00 30.00

MoP 27.27 10.53 13.64 57.14 18.18 21.05 25.00 27.06
MoP-reduced 22.73 10.53 18.18 57.14 33.33 15.79 15.00 28.24

n
o
n
-f

ro
n
ta

l DCT
eye 29.73 3.23 21.88 29.63 22.73 17.78 12.50 19.47

MoP 40.54 12.90 6.25 33.33 4.55 11.11 28.13 19.91
MoP-reduced 35.14 6.45 9.38 40.74 9.09 6.67 18.75 17.70

LBP eye 32.43 9.68 12.50 44.44 9.09 15.56 25.00 21.24

Gabor
eye 27.03 16.13 12.50 55.56 13.64 11.11 12.50 20.35

MoP 24.32 16.13 18.75 22.22 9.09 15.56 6.25 16.37
MoP-reduced 37.84 16.13 9.38 48.15 18.18 17.78 18.75 23.45

Table 6: Correct classification rates (in %) for different classifiers
Features Classifier Angry Disgust Fear Happy Neutral Sad Surprise Overall

LBP-TOP RBF SVM 44.00 20.00 14.81 43.55 34.55 20.31 9.62 27.27

DCT
NN 28.81 32.00 18.52 16.13 12.73 3.13 21.15 18.43

lin. SVM 27.12 2.00 20.37 41.94 21.82 12.50 9.62 19.95
poly SVM 35.59 2.00 14.81 50.00 29.09 7.81 15.38 22.73
RBF SVM 16.95 6.00 3.70 43.55 49.09 9.38 11.54 20.45

Gabor
lin. SVM 30.51 20.00 14.81 53.23 23.64 10.94 15.38 24.49
poly SVM 30.51 20.00 14.81 46.77 16.36 7.81 19.23 22.47
RBF SVM 35.59 12.00 7.41 46.77 25.45 7.81 11.54 21.46

AU Int. NM 32.20 38.00 7.41 46.77 14.55 1.56 1.92 20.45



Table 7: Correct classification rates (in %) for dif-
ferent training sets evaluated on Val and Test set.

Train set Angry Disgust Fear Happy Neutral Sad Surprise Overall

V
a
l Baseline 44.00 20.00 14.81 43.55 34.55 20.31 9.62 27.27

EmotiW 44.07 32.00 9.26 48.39 16.36 15.63 15.38 26.26
Google 40.68 18.00 0.00 72.58 38.18 3.13 11.54 27.02

T
e
s
t Baseline 50.00 12.24 0.00 48.00 18.75 6.97 5.71 22.75

EmotiW 48.15 8.16 12.12 52.00 14.58 13.95 20.00 25.64
Google 33.33 12.24 3.03 86.00 43.75 2.33 8.57 29.81

the very simple approach of using a NM classifier on top of
the AU intensity estimates gives comparable results to using
DCT with a RBF SVM. Thus, one could guess that with
a more sophisticated machine learning approach than the
NM classifier their could be even more gain in performance.
Also, using Gabor instead of DCT features for the AU in-
tensity estimation might add another boost. Compared to
the video-only baseline using LBP-TOP and RBF SVM all
the other approaches presented here are worse. This might
be mainly due to the additional time information which is
incorporated through the LBP-TOP features, although us-
ing Gabor features at a resolution of 96×120 comes close to
the baseline without using any timing information.

4.5 Influence of Training Data
To see how a classifier performs when not trained on the

EmotiW2013 dataset, but on some external data, we trained
the classifiers alternatively on the web expression dataset
provided by Richter et al. [14]. This dataset is also collected
via a semi-automatic process using images from Google Im-
ages. The dataset consists of 4761 images labeled for the
seven basic emotions also used in EmotiW2013.

The results for this experiment using linear 1-vs-1 SVMs
and Gabor on 96×120 face images are shown in Table 7. We
can see that the overall results using Google Images are even
better than the once using the EmotiW training set when
evaluating on the validation set and on the test set. This
suggests that using all samples from a sequence as training
data for a specific class deteriorates the performance, since
the clips might contain also facial expressions not relevant
for the labeled emotion. On the test set, both models even
outperformed the baseline, which might suggest that either
the timing information did not help as much on the test set
or the baseline model was overfitted because of the use of a
RBF kernel.

4.6 Human Evaluation
Since the baseline results on the EmotiW2013 dataset are

very low, and our experiments also did not achieve better
results on the validation set, we decided to do a human
evaluation to compare to how well humans do in classifying
the emotions of the clips and what the difficulties might be.

For this experiment, four, respectively five, persons la-
beled the training, respectively validation set. Since our
approach is only using the video data we decided to let
the annotators label the clips without listening to the au-
dio track. Figure 3a and Figure 3b depict the percentage of
clips from the training set, respectively validation set, the
annotators agreed on with respect to how many annotators
at least agreed. The figures show similar trends. Basically
on almost all videos there was an agreement of at least two
annotators. But three people (75%) agreed only on 63.7%

Table 8: Correct classification rates (in %) of human
annotators on the video-only validation set.

Labeler Angry Disgust Fear Happy Neutral Sad Surprise Overall

human 1 71.19 10.00 48.15 69.35 70.91 53.13 65.38 56.31
human 2 67.80 20.00 40.74 82.26 74.55 48.44 21.15 52.02
human 3 62.71 22.00 55.56 83.87 65.45 57.81 55.77 58.59
human 4 76.27 6.00 46.30 79.03 56.36 67.19 71.15 58.84
human 5 62.71 28.00 59.26 82.26 63.64 62.50 50.00 59.34

Average 68.14 17.00 50.00 79.35 66.18 57.81 52.69 57.02

(a) training set (b) validation set

Figure 3: Percentage of clips for which at least a
specific number of the human annotators agreed on
when only taking the video stream into account.

of the training set and four people (80%) on 60.1% of the
validation set. The inter-rater reliability in terms of Fleiss’
(overall) kappa is 49.76% (z = 55.26, p = 0) for the training
set and 52.63% (z = 77.9, p = 0) for the validation set and
thus shows moderate agreement. Looking at the agreement
for the individual classes, disgust is the least agreed on.

The results in terms of correct classification rate with re-
spect to the official labels are presented in Table 8.

In Figure 4a, the corresponding confusion matrix for hu-
man 5 is shown. We see that even though humans are able
to perform twice as good as the evaluated automatic ap-
proaches, the performance is still very bad. One thing that
the human annotators noticed is that there are quite a few
videos for which it is hard to decide the emotion class. Rea-
sons for that are first of all, often it is hard because one
needs more context knowledge to make a final decision, since
the facial expression is too ambiguous or too subtle. As a
human, one tries to do lip reading then or derive context
knowledge from the interaction of the characters or events

(a) human 5 from Table 8
with respect to the official
labels

(b) official labels with re-
spect to the revised human
annotated subset

Figure 4: Confusion matrices on the validation set.
The rows correspond to the estimates, the columns
to the reference.



(a) sad (b) anger (c) disgust

Figure 5: In clip 010025312 from the movie“Messen-
gers”, labeled with “sad” in the validation set, mul-
tiple emotions are present. The face crop-outs de-
pict the different prototypic facial expressions. The
character’s spoken text is “You never listen to me!”.

that happen in the background. But in some cases, this is
not enough and one would rather additionally need the au-
dio or even longer clips. In other cases, the labelers would
have rather liked to assign some other class of emotion to
the clip which is not one of the seven basic emotions, like
contempt or frustration or the like. The lower agreement
on disgust is due to the fact that it sometimes really seems
to be more or less arbitrary if a clip is labeled as anger or
disgust, or the expression is too subtle so that it gets con-
fused with neutral. For other clips, it was hard to decide for
which person the emotion had to be determined. This had
two reasons, either there were shot changes within the clip
so that over time different people were present in the clip, or
in some cases there were even multiple persons visible at the
same time. Sometimes it was even the case that one could
see multiple different emotional expressions over time in one
clip. This might be due to mixed feelings, like in the example
in Figure 5. There, the character spoke the text “You never
listen to me!” while looking throughout the clip at multiple
people (not visible in the clip). First she shows sadness, but
then moves to anger and finally to disgust. For this clip
some of the annotators even labeled fear. When characters
were talking, it was sometimes even more difficult to deter-
mine the emotion just from the facial expression, since then,
the mouth movement, due to the speech, distorts the actual
facial expression, but at other times the dynamics and ges-
tures during the speech add additional context knowledge.

The reason for the much better performance of the hu-
mans compared to the automatic approaches is obviously
the already mentioned context knowledge which humans can
make use of and which is not incorporated in the approaches
evaluated here. But also the different illumination condi-
tions, wild pose changes, or occlusions which might lead to
failures in the alignment or also in the classification.

4.7 Evaluation on revised subset
Since the official labels are only derived from one person,

they might not have enough general agreement, as we saw
that at least using video only, humans have a rather low
agreement. Thus, we decided to derive a subset on which
at least 75% of the human annotators agreed on. The re-
sults for some of the automatic approaches evaluated only
on that revised subset are presented in Table 9, and the
confusion matrix of the official labels with respect to this
subset is given in Table 4b. It shows that there is still a big
discrepancy between the revised human subset and the cor-
responding subset of the official labels for the disgust class.

There is some slight increase in performance for the other
emotions (besides neutral), but still the overall classification
rate of 76.89% is a bit low for labels, but that might also
be due to the fact that our human annotators had only the
video track to annotate the data without context knowledge
from the audio track or other sources. For the automatic
approaches now the effect of the RBF kernel is reversed, i.e.
for DCT the results drop while for Gabor they improve using
a RBF kernel.

5. CONCLUSIONS
We presented results from extensive experiments, both in

terms of machine and human performance. We showed that
automatic facial expression analysis in the wild is still very
challenging and that even humans only achieve an agree-
ment of 52.63% in terms of Fleiss’ kappa over all classes.
The best result on the validation set using an automatic
approach trained on the challenge training set, with 26.26%
overall correct classification rate, was achieved for Gabor fil-
tered images of 96×120 pixels and linear 1-versus-1 SVMs.
Slightly better results, namely 27.02% overall correct classi-
fication rate, were achieved when training the same approach
on an external dataset of web images. These results are rela-
tively close to the baseline, which additionally makes use of
temporal information via spatio-temporal features. When
evaluated on the official test set, our best approach even
outperformed the baseline by 7.06% absolute when using
external data for training.

One of the problems we noticed is due to the nature of
the labels of the dataset. Since there are only emotion la-
bels for a whole clip available, but the clips might contain
even multiple emotions or non-emotional faces, the classi-
fiers trained on all frames might not work quite as well as if
the frames would be properly filtered. To cope with such a
situation multiple instance learning based approaches might
work better [19, 18]. This also influences the estimation and
evaluation, since to determine the emotion of a clip, one
has to derive a label from all the frame estimates. When
taking also non-emotional faces or even other emotions into
account for the estimation of the clip estimate, the perfor-
mance might again drop. On the other hand, since the clips
are not presegmented to contain only one person with only
one expression, sometimes sequences contain multiple differ-
ent emotions either because the same person expresses them
over time or because multiple persons in different emotional
states are visible. To account for that in the evaluation pro-
cedure, the ground truth labels should actually also reflect
that, and it should be either possible for the automatic ap-
proaches to choose one of these expressions contained in the
clip or the evaluation should be rather performed on a frame
basis. This is also related to the problem of segmenting the
clip into parts with emotional content, which needs a com-
pletely different kind of benchmark.
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Table 9: Correct classification rates for different classifiers on revised human labels
Features Classifier Angry Disgust Fear Happy Neutral Sad Surprise Overall

original labels 80.49% 50.00% 76.67% 93.88% 62.00% 80.56% 67.86% 76.89%

DCT lin. SVM 31.71% 0.00% 16.67% 51.02% 34.00% 8.33% 3.57% 26.89%
DCT RBF SVM 12.20% 0.00% 0.00% 48.98% 52.00% 5.56% 7.14% 24.79%
Gabor lin. SVM 34.15% 25.00% 10.00% 63.27% 16.00% 16.67% 10.71% 27.73%
Gabor RBF SVM 36.59% 0.00% 6.67% 59.18% 38.00% 19.44% 14.29% 31.93%

AU Int. NM 39.02% 25.00% 3.33% 59.18% 12.00% 0.00% 0.00% 22.27%
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