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Abstract

Efficiently indexing and retrieving multimedia data from huge collections is a very impor-
tant research field today. This study presents a content-based classification system for
TV genre prediction and web video categorization. The approach is to classify TV source
material with genre tags and web source with category tags only using content–based cues
from the videos without any metadata or other information. Examples for TV genres
are cartoons, commercials, news and sports. Web videos are grouped into categories like
autos, education, blog and travel. The classification of web video material proves to be
more difficult. Categories do not reflect the same properties as genres and the diversity
in web categories is very high. Therefore, it is much more difficult to draw conclusions
from content-based features about the category a video should belong to. Also, often
videos clearly belong to multiple categories like for example news or a home video about a
sports event. This thesis presents a comprehensive related work section, which also covers
all research fields affecting video indexing. The presented system for genre or category
classification utilizes cues from visual, structural, aural and cognitive properties to predict
tags with different machine learning algorithms like SVMs or tree classifiers. The system
is enhanced with the possibility to extract and utilize several different SIFT descriptors in
bag–of–words fashion. Cognitive and visual features, and SIFT descriptors are extracted
from keyframes. The system is evaluated on three datasets from both video domains, two
datasets from Italian and French TV channels and one from the video portal YouTube.

The results on the TV domain datasets are excellent and bring classification rates of 98.1%
and 94.7% on the Italian and French dataset respectively. The content–based classification
on the TV domain is robust enough to handle the small diversity and number of genres.
A peak performance of 44.0% on the YouTube dataset confirms the difficulties of the
web domain. The high diversity, high number of categories and the categories themselves
prove to be a challenge for a content–based system. Nevertheless, the experiments showed
several interesting points. Performance of face detection based cognitive features drops
significantly when applied on keyframes and not all frames of a video. Specific features
work better for some genres than others or a fusion of many features. This may suggest
to use individually chosen feature sets or even single features for each genre or category
instead of one overall classification framework. Also, visual features are found to be the
best working features, achieving the most correct class predicitions for a majority of genres
and categories.
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Kurzzusammenfassung

Statistiken über das Video Portal YouTube besagen, dass jede Minute 72 Stunden an
Videomaterial hochgeladen werden. Diese enorme Datenmenge und das stetige Wachstum
erfordern es, diese Daten zu managen. Das bedeutet, die Daten in bestimmte Gruppen zu
gliedern um das Archivieren und Suchen zu vereinfachen. Bei YouTube z.B. werden Videos
durch User hochgeladen, während diesem Prozess einer vordefinierten Kategorie zugeord-
net, und mit verschiedenen Informationen ergänzt. Zu diesen Informationen zählen der
Titel, eine Beschreibung und Tags. Mittels textbasierter Suche können die Videos später
anhand dieser Daten gesucht und gefunden werden. Beispiele für Kategorien sind Tiere,
Autos, Entertainment, Sport, Nachrichten oder Blogs. Dieses Verfahren bringt einige
Probleme mit sich. Erstens ist eine gewisse Anstregung seitens des Uploaders erforderlich
ein Video hochzuladen und zweitens sind die Informationen des Uploaders möglicherweise
unzuverlässig und unvollständig. Um einen robusten, effizienten und einheitlichen Upload
der Videos zu gewährleisten, erfordert es ein automatisches System, welches ohne be-
gleitende Informationen auskommt und Videos anhand seines Inhalts kategorisiert. Web
Videos sind aber nicht allein verantwortlich für den rasanten Zuwachs an Videodaten im
World Wide Web. Auch Rundfunksender haben eine stetig anwachsende Kollektion ihrer
Fernsehprogramme, welches es zu archivieren und organisieren gilt. Im Gegensatz zu
Web Videos, die nach Kategorien geordnet werden, sind TV Inhalte in Genres gegliedert.
Beispiele für Genres sind Cartoons, Werbung, Nachrichten oder Wetterberichte. Auch hier
und aus dem selben Gründen wie in der Web Video Domäne ist ein automatisches System
wünschenswert.

Im Laufe der letzten Jahre wurden sehr viele Studien über automatische Videoklassi-
fizierung in beiden Domänen durchgeführt. TV–Klassifizierungssysteme arbeiten alle nach
ein und demselben grundlegendem Prinzip. Der Inhalt eines Videos wird auf verschiedenen
Ebenen analysiert, verschiedene Informationen und Statistiken werden daraus gewonnen
und diese werden mittels Maschinenlernverfahren klassifiziert. Seit dem Anfang dieser
Forschungsrichtung Mitte der 90er Jahre wurden bereits multimodale Ansätze verfolgt. In
der Regel werden Informationen aus den Bildern, dem Audiosignal und anderen Modal-
itäten gesammelt. Audiosignale werden z.B. in Bereiche wie ”Stille”, ”Geräusche”, ”Musik”
oder ”Sprecher” segmentiert. Bildinformationen wie Farbverteilungen oder Texturen wer-
den aus den Bildern gewonnen. Statistiken werden auch über Schnitte und deren Laufzeiten
oder die Anzahl der Gesichter pro Bild gesammelt. Diese Informationen, so genannte ”low–
level features” werden als Eingabe für Maschinenlernverfahren verwendet. Beispiele für
solche Verfahren sind ”Support Vector Machines”, ”Neuronale Netze” oder ”Entscheidungs-
bäume”. In der Web Video Domäne ist es auch üblich, zusätzliche Informationen wie den
Titel, die Beschreibung und die Tags zu verwenden und Dokumentenklassifizierungsver-
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fahren darauf anzuwenden. Es ist ersichtlich, dass das Forchschungsgebiet der Videoklas-
sifizierung eine große Anzahl an verwandten Forschungsgebieten zusammenführt.

Diese Arbeit präsentiert ein automatisches Klassifizerungssystem, um Videos in vordefi-
nierte Genres oder Kategorien zu klassifizieren. Als Aufgabe wird dieses System überar-
beitet und erweitert, um in beiden Domänen Videos erfolgreich zu kategorisieren. Ver-
wandte Arbeiten befassen sich ausschliesslich mit einer der beiden Domänen und die Leis-
tungsfähigkeit der vorgestellten Systeme wird nur auf einem der beiden Domänen getestet.
Diese Arbeit nimmt es sich zum Ziel, ein Domänen übergreifendes System zu präsentieren
und es auf Daten beider Domänen zu evaluieren. Des Weiteren wird ein umfangreicher
Einblick in die beteiligten Forschungsgebiete und verwandten Arbeiten gewährt.

Das vorgestellte System extrahiert Informationen aus vier verschiedenen Informations-
bereichen. Es werden Merkmale wie ”Mel–Frequency–Cepstral–Coefficients” oder ”Zero–
Crossing–Rate” aus dem Audiosignal gewonnen. Mittels Gesichtserkennung werden Statis-
tiken über die durchschnittliche Anzahl an Gesichtern und deren Verteilung gesammelt.
Visuelle Informationen über Farben und Texturen werden zusammengetragen und Statis-
tiken über wechselnde Aufnahmen berechnet. Diese Informationen werden als Eingabe
für SVMs zur Klassifikation verwendet. Das vorhandene System wird um ein ”Schlüssel-
bild” (Keyframe) Extraktionsmodul erweitert. Informationen aus dem Bildbereich werden
nicht mehr auf allen Frames eines Videos sondern nur noch auf ausgewählten Frames
berechnet. Als neue Merkmale können verschiedene SIFT–Deskriptoren extrahiert wer-
den. Die Maschinenlernverfahren ”Entscheidungsbäume” (Decision Trees) und ”Entschei-
dungswälder” (Random Forests) werden dem System hinzugefügt und evaluiert.

Das System wird auf zwei Datensätzen der TV Domäne und einem YouTube Datensatz
evaluiert. Die Ergebnisse zeigen, dass das System in der TV Domäne bereits sehr zuver-
lässig arbeitet, und 98.1% und 94.7% der Videos korrekt klassifiziert werden. Auf dem
YouTube Datensatz wird eine Klassifizierungsrate von 44.0% erzielt. Die Evaluation zeigt
weiterhin, dass die besten Ergebnisse mit unterschiedlichen Merkmalen gewonnen wer-
den und bestimmte Merkmale sich besonders leistungsstark bei bestimmten Genres oder
Kategorien zeigen. Es wird auch ersichtlich, dass die Fusion verschiedener Merkmale im
Gegensatz zu einem Merkmal die Klassifizierungsrate manchmal verringert. Daraus folgt
die Annahme, dass individuelle Klassifizierungsverfahren für jedes Genre oder jede Kate-
gorie zuverlässiger arbeiten könnten. Die Klassifizierung mit SVMs übertrifft die beiden
Varianten der Entscheidungsbäume bei allen Datensätzen. Bei den Merkmalen heben sich
die SIFT–Deskriptoren, gefolgt von den anderen visuellen Merkmalen deutlich positiv von
den restlichen Merkmalen ab.

Ansätze für zukünftige Verbesserungen beinhalten die Verwendung von temporalen Merk-
malen, ”Tracking” basierter Gesichtserkennung, sowie die Segmentierung des Audiosignals
und Dokumentklassifizierung extrahierter automatischer Spracherkennung. Die automa-
tische Spracherkennung sollte vor allem in der Web Video Domäne zu einer deutlichen
Verbesserung der Klassifizierung führen, da die Kategorien in dieser Domäne mehr dem
inhaltlichen Thema nahekommen als bestimmten Genremerkmalen. Oft unterscheiden
sich die Videos nur am Gesprächsthema und lassen sich durch Bildmerkmale nicht korrekt
klassifizieren.
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1. Introduction

Today’s multimedia growth in the world wide web seems without limit. Contributing to
the vast amount of digital videos are video portals like YouTube. Above all the possibility
for users to upload their videos has generated an incredible increase in video data on the
World Wide Web. Checking YouTube statistics1 72 hours of video material are uploaded
every minute. The rapid growth of YouTube data over the years is shown in Figure 1.1
and this quantity of data comes from only one, although the most popular, video portal.

Another big amount of media arises from the collections of broadcast empires like BBC
and CNN as well as other broadcast channels and service providers, which archive their
huge amount of broadcast programs accumulated over the years and add their new content
to their libraries to make them available digitally for online viewing.

1.1. Motivation

This enormous amount of data enforces the research for automated systems to manage
the data collections, making indexing and retrieving simple, efficient and inexpensive, yet
consistent and robust. The development of such automated systems plays a crucial role in
today’s multimedia analysis and retrieval research area.

Videos from the YouTube portal are separated by a fixed number of categories. During the
upload process the user manually assigns the video to one of several predefined categories,
e.g., sports, news or entertainment, and adds information like title, tags and description
to it. This category and surrounding metadata is then used for text–based search systems
currently employed at these portals. Several problems arise with this course of action.
First the process of uploading a video requires manual and time consuming work from
the user. Furthermore, the information and category chosen by the uploader is subjective
to his opinion, may be inaccurate and incomplete, and inconsistent with the information
uploaded for similar videos by different users. For example different users may upload the
same video, showing news about a popular movie star, in different categories like news or
entertainment.
1http://www.youtube.com/t/press_statistics, access June 2012
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1. Introduction

Figure 1.1.: YouTube growth over the past years

The management of broadcast media deals with similar problems. Extra human effort is
needed to categorize and archive the data. Manual indexing by human effort is expensive,
time consuming and faulty. Uploaders and broadcast channels would benefit greatly from
an automated and reliable indexing and retrieval system based on the content of the media
alone thus eliminating human error and saving time of the user. In addition, the search
systems would benefit from a more consistent and accurate database independent from
any outside source.

The content of the video material itself offers a great amount of information from a wide
range of modalities, which can be utilized properly by an automated content–based system.
Borrowing from different computer vision and audio analysis research fields, many audio–
visual cues can be extracted from each video to achieve this task, ranging from visual
information like color information, face– and object detection, to audio analysis like audio
segmentation and automatic speech recognition (ASR) and characteristics of the videos
derived from shot detection. In the end these are the same cues we humans apply for this
task.

Many aspects of image and audio processing were researched extensively over the past
years and they all have the common goal to find a solution for a specific problem, i.e.
to bridge the semantic gap between extracted low–level features and high-level semantic
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concepts.

A lot of research has already been conducted on the topic of genre classification in the
music and video domain. Classifying video material into genres began in 1995. Today
the research shifts to the more challenging domain of web videos. Due to the possibility
to use surrounding metadata as well as additional information like related videos and
social information, a lot of studies focus including this information in the classification or
retrieval systems.

1.1.1. Difference between the TV and Web Domain

The TV and web video domain distinguish themselves in several different ways. For a
better understanding of the separation of these domains and the specific challenges for
genre classification in these domains, their characteristics are described next. An overview
is available in Table 1.1.

TV domain. The TV domain is the easier one of the two domains. Usually datasets from
this domain consist of material from the same TV channel or broadcast group, e.g.,
the Italian RAI dataset from Montagnuolo and Messina [MM07]. Genres for classi-
fication are not too difficult and have a lot of distinguishable properties. Example
genres are cartoons, commercials, news, sports, movies or game shows. The variety
in broadcasts like news, weather forecast and talk shows is very low because the
production and style do not change. The same properties apply to cartoons and
television series to a certain degree, too. These shows reoccur in the program of
one broadcast channel on a regular basis. The production values and style of TV
content is professional and is provided in excellent video quality. In contrast, web
video portals contain a lot of amateur content in low quality. The characteristics of
TV domain videos lead to an overall small variety in content and make the task of
genre classification easier than the one in the web domain.

Web domain. The arrangement of web videos is done in a different way compared to TV
content. Even though they share some of the genres like news and sports, the web
videos are usually organized in categories like blogs, educational, travel, religion and
fitness. The web domain unlike the TV domain contains content from many differ-
ent sources ranging from professional and semi–professional content to amateurishly
produced video material, thus the variation in production value, style and quality
varies a lot. The main problem is user generated content and the possibility to up-
load data from every kind of device with a camera. The possibility for the uploaders
to add surrounding metadata by themselves is another difference to the TV domain.
To better understand the difficulty of classifying videos into categories in the web
domain, the following examples are given:

• Weather forecasts from many different sources have many different properties
and styles making them harder to identify than the single weather forecast
repeating on one TV channel.

• Users upload content filmed with web cams or phones varying greatly in pro-
duction style and quality. Amateur videos of weather forecasts, news, cartoons,
and talk shows make the categories even more challenging. Categories like blogs
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1. Introduction

can have many different topics (hobbies, tutorials and reviews), presentations
and visual styles.

• Another good example for variety in one category is the entertainment sector in
YouTube. Music related videos, a small portion in the entertainment category
come in many different types: There are videos from live performances like big
concerts or small concerts. The category also includes lessons and tutorials for
music instruments and songs. Other videos show people singing and official
music videos or videos with the song lyrics. Lyrics videos can be full music
videos, still pictures or only showing the lyrics in front of a black background.

domain TV domain web domain

diversity in style low high

quality good bad – good

style professional amateur – professional

genre boundaries easy defined overlapping and difficult

variation inside genres little high

Table 1.1.: TV vs web domain

1.2. Problem definition

Many different terms are used to describe the task of genre tagging in different research
fields. TV programs are always classified into genres, as for web video content categories
are used. Further the terms classifying, tagging and indexing are sometimes used inter-
changeably. They all describe the same task of assigning a label to a video to group videos
with similar properties.

Organizing large collections of data in a meaningful way is necessary to manage the data
easy and reliable. In case of multimedia data like videos, the approach of arranging
the data into genres or categories is common. The task of this study is to extend an
automated system for TV genre classification and evaluate its performance in both the TV
and web domain. Data from the TV domain will be classified into several predefined genres
while web videos will be tagged into different categories. Only content–based information
of the video itself will be used to achieve this, dismissing any surrounding metadata,
other information and the need of human influence on purpose. This approach is taken
to simulate the realistic conditions in the World Wide Web, because the surrounding
metadata can be missing or might include faulty information.

The system is based on the classification approach for tagging videos. Several low–level
features from different modalities will be extracted to generate a classifiable representation
of the input data. Different machine learning algorithms will be used to predict genre or
category tags for each sample video. Two different datasets from the TV domain and
one dataset from the web video domain will be evaluated on this system, using parts of
the datasets for training supervised machine learning techniques on the extracted features.
The simple goal is to classify a new video into the correct genre or category for its respective
dataset. Groundtruth labeling is based on the information provided with the datasets and
will be described in detail in Chapter 5.
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1.3. Contribution

This work improves the baseline system developed at the Institute of Anthropomatics at
the KIT. This system, already able to classify videos into genres from several features from
different modalities, is extended for the categorization of web videos. The web video data
is collected from YouTube with videos from the actual top level hierarchy categories.

Several new additions, e.g., features and classification methods are added to the system
to achieve this goal and investigate their usefulness for this task. Existing features and
classifiers are further improved or updated, e.g., the face detection module. New additions
include several SIFT feature descriptors and Decision Tree and Random Forest classifiers.

This work will also show the limitations of the content–based genre classification on the
web video domain. Due to the high variety in the dataset, the excellent results achieved on
the TV domain are not expected to be repeated. This could indicate that multilabel and
hierarchical classification may be unavoidable for better content–based web video tagging
systems in the future, compensating the fact that the currently used features are not
sufficient enough to distinguish between blurry genre boundaries and high diversity in the
web video domain.

Topics like multilabel and hierarchical classification as well as document classification on
ASR transcripts will not be part of this work and are beyond the scope of this thesis.
However, to get a complete overview of genre classification research field, the ”Related
Work Chapter” will present all important topics affecting genre classification.

1.4. Outline

Chapter 1, the introduction, deals with the situation of todays multimedia growth, re-
sulting in the motivation of this research. It gives insight into the different domains and
individual problems. Finally it establishes the contributions of this study.

Chapter 2 focuses on the related work in the research field of genre and category classi-
fication. Important achievements in both the TV and web video domain are presented,
respectively. The chapter embraces many different topics that are not part of this thesis
but relevant or already used for genre classification.

Chapter 3 describes the methodology of the proposed system for video tagging. The state of
the system before this thesis is described first, followed by the additions and enhancements
that are part of this thesis.

The implementation of the system is specified in detail in Chapter 4. The chapter is
divided into the separate modules of the system, which include shot detection, the C++
framework, the audio analysis module and the SVM classification scripts.

The system is extensively evaluated on different datasets and results are presented in
Chapter 5. The chapter contains information on the used datasets and the parameter
specifications for the evaluation. The results are compared to the old results of the baseline
system as well as related work from Chapter 2.

Chapter 6 presents the conclusions which arise from the results of this thesis. Additionally
several ideas for future improvement of the system are introduced.
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2. Related Work

This chapter tries to give an insight into the diversified research field of genre classification.
First in Section 2.1, TV genre classification related work is presented beginning from the
earliest work in 1995 by Fischer et al. [FLE95] to the current state–of–the–art work from
Montagnuolo and Messina [MM09] in 2009. Several related works from the web video
domain of category tagging are presented in Section 2.2 followed by an extensive overview
over all the research areas in genre classification in Section 2.3.

Figure 2.1.: Comparison of audio utilization in the TV domain by Brezeale and Cook
[BC08].

2.1. TV genre classification

In the past years a lot of research went into classifying TV programs into genres. To
give a quick overview of this field only the first and the most recent work is presented in
more detail. For more interested readers an extensive overview of the most important work
done over the years can be found in the works of Montagnuolo and Messina [MM07][MM09]
and Brezeale and Cook [BC08]. Montagnuolo and Messina [MM09] provide an excellent
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introduction and work overview in their study and Brezeale and Cook [BC08] present a
survey of the literature for automatic video classification. The survey presents studies
for video classification divided into categories depending on which features they utilize.
Examples of these studies are shown in Figure 2.1 for audio features and in Figure 2.2 for
visual features. The figures show that many different features were evaluated for video
classification for each modality. Information about a third category for text features and
studies combining the different modalities can be checked in the survey by Brezeale and
Cook [BC08].

Figure 2.2.: Comparison of visual utilization in the TV domain by Brezeale and Cook
[BC08].

TV genre classification was first presented in 1995, when Fisher et al. [FLE95] developed
a system to classify TV programs into five different genres of news, tennis, car race,
commercials and cartoons, working with a wide range of multimodal information. The
three steps of the system include syntactic analysis of the raw video material collecting
basic statistics, derivation of style attributes from these statistics and finally predicting a
genre from these style attributes. Already in the beginning it was clear to utilize as much
information as possible to accomplish this task. Fisher et al. [FLE95] derived information
from color statistics, cut detection, camera motion, object motion and audio. These low–
level statistics provided a more abstract level of video analysis such as scene length and
scene transitions, camera panning and zooming, speech and music.

Two of the most recent and extensive works in TV genre classification come from Montag-
nuolo and Messina [MM07] [MM09] with the 2009 work being an update and new state–
of–the–art of the previous work. Their video genre classification research also includes
focusing on fuzzy mining and classifiers [MM08a][MM08b]. Since our baseline system is
inspired by [MM07], which is a perfect example of the general approach in TV genre
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classification, the system is presented in little more detail.

2.1.1. TV Genre Classification Using Multimodal Information and Mul-
tilayer Perceptrons [MM07]

This work presented the most extensive experiments in TV genre classification to date. It
was the first study to run experiments on complete TV broadcasts from the largest dataset
collected for this research. Classifying the highest number of genres, the study achieved
an overall best classification accuracy.

The dataset was collected from complete TV programs from three different Italian TV
channels, which means that instead of small sample clips, complete TV broadcastings
with running times over an hour like football or talk shows were used. The total amount
of data is 111 hours. All videos belong to one of the seven genres: cartoon, commercial,
football, music, news, talk show or weather forecast.

The attention of this work lies on the multimodal information combination and the classifi-
cation using Multilayer Perceptrons (MLPs). The multimodal information is accumulated
into four feature vectors, each belonging to a different category. These categories are:

1. Structural: Syntactic information from shot boundary detection, e.g., relationships
between frames, shots and scenes

2. Visual: Physical properties perceived by the users like colors, shapes and motion

3. Cognitive: Information related to high–level semantic concepts like faces

4. Aural: Audio analysis of noise, speech and music

Visual. The visual feature vector consists of seven sub–features. Color is represented
by hue, saturation and value. Luminance is represented by gray scale and tex-
tures are described through contrast and directionality features. Temporal activity
information is collected based on displaced frame difference. Each feature is mod-
eled by a 10–component Gaussian Mixture Model. The final feature vector is 210–
dimensional, consisting of the GMMs weight, mean and standard deviation values
(7× 10× 3 = 210).

Structural. Automatic shot detection information is gathered to produce two structural
features. For one the rhythm of the video is expressed through average shot length
and two, shot length distribution is saved in a 65–bin normalized histogram using
64 uniformly distributed bins for shot lengths between 0 and 30 seconds and the last
bin for longer shots.

Cognitive. Frontal face detection is applied to model three features. Face distribution
along the video with information of the number of faces per frame, face positions in
a frame in a 3 × 3 grid and average number of faces in the video. All features are
normalized.

Aural. The audio signal is segmented into seven classes: speech, silence, noise, music,
speaker, speaker and noise, speaker and music. An ASR system is also applied to the
audio signal. Normalized duration values for each audio class and average speech
rate over the entire video are computed.
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Each of these four feature vectors serve as an input for one neural network classifier. The
authors use k–fold cross validation for training and testing, splitting the dataset into 6
disjoint subsets of equal size, using each subset for testing while the other 5 subsets are
used for training. The outputs of the neural network classifiers are combined and averaged
for all genres and finally the genre with the highest probability is picked. The classification
pipeline is shown in Figure 2.3.

Figure 2.3.: System overview by Montagnuolo and Messina [MM07].

An overall classification accuracy of 92% was reached on the evaluation dataset. Improving
their system in [MM09] utilizing new and modified features, the accuracy was further
boosted to 95% for the same dataset. Improvements include structural and cognitive
feature vector improvements.

2.2. Web video categorization

In recent years the focus on genre classification shifted towards the rapidly growing web
video domain. The web video domain provides a much more difficult challenge compared
to the TV domain. The multimedia data is not arranged through genres but through
categories. The number of categories is often very high and even taxonomic. The data
itself is very diverse and sometimes not identifiable belonging to one category. The fast
growth of web video portals like YouTube demands research for an efficient and automated
management system. For example, progress in this domain is currently pushed in the
Tagging Task of the MediaEval Benchmarking Initiative for Multimedia Evaluation1.

2.2.1. Web Related Work

More diverse content and different kind of categories than in TV domain makes it more
difficult for content–based systems to achieve high accuracy rates. Most systems for this
domain try to incorporate additional information surrounding the videos like title, tags,
and description.

Several studies have been conducted on the web video domain in the past years. Some
examples are the works of Wu et al. [WZN09], Ulges et al. [USKB07], Song et al. [SZZ+09],
Zhang et al. [ZSC+09], Borth et al. [BHK+09], Yang et al. [YLYH07], Song et al.
[SZYW10] and Wang et al. [WZS+10]. Most of them were studies as part of the Multimedia
Grand Challenge2. A general overview of their characteristics can be viewed in Figure 2.4.

1http://www.multimediaeval.org/mediaeval2012/tagging2012/index.html
2http://comminfo.rutgers.edu/conferences/mmchallenge/2010/02/10/google-challenge/
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2.2. Web video categorization

From these seven examples only Ulges et al. [USKB07] relies purely on content and only
Wu et al. [WZN09] on surrounding metadata combined with other sources, while all others
include both content and metadata and even additional sources. In the work of Wu et
al. [WZN09] these additional sources are related videos presented in search results of
the online video portals and other videos uploaded by the same user indicating personal
interests of the user. Song et al. [SZYW10] adapt document classifiers to benefit from
large document datasets labeled with the same categories for training their classifiers in
the video domain. Wang et al. [WZS+10] benefit from both related videos and text–based
web pages as additional information sources for training and classification.

Figure 2.4.: Comparison of web video related work

SIFT features introduced by Lowe [Low04] dominate the content–based visual features
and have already proven to be very useful in high–level concept detection like in the
TREC Video Retrieval Evaluation (TRECVID3). But also all different kinds of features
from aural, cognitive and structural cues are used as can be seen in Figure 2.4.

The more diverse but also interlaced categories call for hierarchical and multilabel clas-
sification as proposed by Borth et al. [BHK+09], Yang et al. [YLYH07], Song et al.
[SZYW10] and Wang et al. [WZS+10]. Finally, two systems from Borth et al. [BHK+09]
and Yang et al. [YLYH07] tried to bridge the semantic gap of low–level features and
high–level concepts with the Latent Semantic Analysis.

2.2.2. Web Video Datasets

Several works tried to analyze web video domain data and provide benchmark sets with
additional information. Benchmark sets were created by Zanetti et al. [ZZMP08], Loui et
al. [LLC+07] and Cao et al. [CZS+09].

3http://trecvid.nist.gov/
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Loui et al. [LLC+07] offer a video benchmark set with a large number of user videos and
annotation of concepts. The dataset includes videos from Kodak and web videos from
YouTube, extracted visual features for Kodak videos (edge direction histogram, gabor fil-
ter, and grid color moment) and download links for YouTube videos. Furthermore the
Kodak video dataset comes with keyframes (1 per 10 seconds), while YouTube videos in-
clude metadata information like title, tags, category, and author. The videos are annotated
with over 100 concepts in seven categories.

Zanetti et al. [ZZMP08] present well established classification algorithms from the TV
domain and evaluates them on the web video domain. A dataset from YouTube is created
and differences and difficulties compared to the TV domain datasets are presented as
well as evaluational results using the TV domain systems. It showcases the difficulties of
classification on diverse and challenging video material.

The MCG–WEBV benchmark dataset from Cao et al. [CZS+09] consists of 80,000 of
the most viewed videos from YouTube in a small time period at the beginning of 2009.
The data comes along with a wide range of additional information, features and metadata.
Information includes low–level visual (color histograms and moments, edge histograms,
wavelet texture and co–occurrence texture), textual (textual vector space model) and aural
features. Keyframes as well as metadata (ID, uploader, date, length and category) and
web features (rating, tagging, title, description, related videos, # of views, # of comments
and # of shots) are part of this benchmark set, too. Groundtruth labels come straight
from the YouTube categories and ‘hot web topics‘ are annotated with human effort.

2.3. Related Research Fields

By now we established the fact that many research topics influence genre classification.
This section covers related work about these topics. Some of it comes directly from genre
classification research while others address a topic by itself and most of the work applies
to the greater topic of semantic concept detection.

2.3.1. Shot Boundary Detection

Automatic shot boundary detection can be viewed as one of the foundations of genre
classification. Not only as a possibility to extract features from shot information like in
the work of Montagnuolo and Messina [MM07], but also as the initial step to segment a
video into useful and meaningful chunks for further processing. Being a building stone in
genre classification, a reliable working shot boundary detection system is necessary, not to
propagate errors through the whole classification process.

Early work on shot boundary detection was done by Zhang et al. in 1993 [ZKS93]. Simple
cuts and difficult shot transitions like dissolves and fade in/outs are the focus in this
work, trying to successfully distinguish between special transitions, camera zooming and
panning, and object movement. A survey of shot boundary detection research up to 2001
is presented by Lienhart [Lie01].

Even today the work on shot boundary detection is not finished. Researchers are trying to
perfect the methods on various of different and difficult shot transition types for difficult
video material. A more recent overview of shot detection research conducted as part of
the TRECVID evaluation during the past years is given by Smeaton et al. [SOD10].
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2.3.2. Content–based Feature Extraction

Content–based features play an important role in genre classification besides the classifica-
tion algorithms. This is especially true in TV domain, where additional information is not
common. Figure 2.4 shows that studies utilize content–based features in standalone fash-
ion or in combination with additional sources. This subsection highlights related work to
all kind of different content–based features used in genre classification or similar semantic
concept detection tasks.

Audio Analysis

Audio material or the audio source of a video plays a crucial role in human perception
to recognize different programs and presents a rich information source for any kind of
work related to media indexing. Research areas include music genre classification, audio
segmentation, automatic speech recognition and music modeling.

Each of this research areas provide information or ideas that can be adopted in video
genre classification. For example segmenting audio into different categories like silence,
noise, music and speech and using these statistics to distinguish genres like proposed by
Montagnuolo and Messina [MM07] [MM09]. Early work began 1996 with Saunders [Sau96]
where radio broadcasts were discriminated into speech and music parts using features like
the Zero Crossing Rate (ZCR). The ASR system used by Montagnuolo and Messina is
described in the work of Brugnara et. al. [BCFG00].

One of the most popular and useful features in audio analysis was presented by Beth
Logan in [Log00], namely the Mel Frequency Cepstral Coefficients (MFCCs). The MFCCs
provide rich information and proved their usefulness in many audio related tasks over the
years. Audio segmentation using MFCCs, ZCR and many different features with SVM
classification into different categories is presented by Lu et al. [LLZ01].

The similar task of musical genre classification is presented by Tzanetakis and Cook [TC02],
where music clips are classified into different genres like classic, jazz, rock and hip hop.
The goal in music genre classification is the same, to provide robust automatic data anno-
tation that is usually done manually. In the proposed classification hierarchy, data is first
distinguished between speech and music and further into a wide range of sub–categories
for music.

Video Analysis

Most of the important visual features in genre classification will be presented in the
methodology chapter as they are part of our genre classification system. Examples are color
histograms, color moments, co–occurrence matrix, color correlograms, edge and wavelet
textures, and local features like SIFT.

2.3.3. Semantic Concept Detection

Semantic concept detection in general and event detection in particular are evaluated each
year extensively in the TRECVID program. For the state–of–the–art results interested
readers can, for example, look at the Media Mill studies by Snoek et. al [SvdSdR+10]
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[SvdSL+11]. Their combination of many different SIFT descriptors and other color features
combined with SVM classification is proved to be very successful in the past years.

One research area in computer vision engages with task of detecting and recognizing actions
in scenes as a part of high–level concept detection. Actions are like walking, running, hand
shaking or opening a door. These actions can prove to be useful semantic concepts and
high–level features in both video domains for genre tagging. Typical low–level features in
this line of work are spatio–temporal features using Histogram of Optical Flow (HoF) or
Histogram of Gradient Orientations (HoG) descriptors. An up–to–date example of this
research comes from Sadanand and Corso [SC12].

Another approach to bridge the semantic gap is the Latent Semantic Analysis (LSA).
Through LSA the relationship between semantic concepts and feature vectors can be an-
alyzed. It produces a set of topics related to the concepts and features. In the order of
appearance, LSA was introduced 1990 by Deerwester et al. [DDF+90], followed by Lan-
dauer et al. [LFL98] in 1998 and extended to Probabilistic Latent Semantic Analysis by
Hofmann [Hof99] in 1999.

An interesting study conducted by Yang and Hauptmann [YH08] looks critically at the
work of high–level semantic concept detection. The authors raise attention to the fact
that concept detectors are more likely copy detectors instead of capturing the essence of
the concepts they try to detect. They argue by showing the poor cross domain results of
these systems.

2.3.4. Document Classification

Useful for annotation of large textual datasets, like with audio and video multimedia data,
or for indexing and searching web pages on the web, document classification precedes mul-
timedia classification and has served as a forerunner for multimedia classification methods.
Like in the multimedia domain very large datasets of text or websites are needed to be an-
notated for indexing and retrieval. A popular example for this is the bag–of–words model
adapted in computer vision. Also the original document classification systems are applied
to web video surrounding information like title, tags and description.

Chen and Ho [CH00] offer a perfect example for typical processing steps in document
classification systems. After acquiring a dataset for processing, important decision have to
be made about feature selection and extraction, pre–processing and classification method.
In document classification features often measure word frequency in documents and the
whole corpus. Important for such features are dimensionality reduction methods, since
the feature space is often very large and sparse, for example if one wants to count the
occurrence of every word in a text as a feature.

Steps for feature dimensionality reduction and feature vector creation include segmentation
and transformation of text into lowercase, stopword removal, stemming, term selection and
feature extraction.

Stopwords. Stopwords are terms that have no semantic meaning in documents and can
be removed without losing any information. Typical stopwords are and, or, the, are
and again, and are removed simply according to a stopword list.
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Stemming. Stemming reduces terms to their roots downsizing the feature space, e.g., ask,
asking, asked, asks are all reduced to ask.

Term selection. An important step is not only to remove high occurrence terms like stop-
words but also low occurrence terms that appear only occasionally and carry not
enough information for the classification. A comparison of feature selection methods
was conducted by Yang and Pedersen [YP97]. Typical term selection models are
document frequency (DF), information gain (IG), mutual information(MI) and χ2–
Test (CHI). Results indicate that the computationally most affordable term selection
is document frequency with a threshold. It simply counts the number of documents
the term appears in and is removed from the feature space if a threshold is not
reached.

Feature extraction. The final feature vector is computed using a vector model represen-
tation computing the term frequency – inverse document frequency (tf–idf) measure.
The tf–idf measure is a statistical measure to evaluate how important a term is to
a document in a collection of documents. The term frequency counts the number
of times a term appears in the current document. The inverse document frequency
computes the importance of the term for the whole document collection. The more
often a term occurs in documents, the less it is suitable for classification. Thus the
inverse document frequency increases the weight of terms that occur rarely in the
document collection:

(tf − idf)i,j = tfi,j × idfi (2.1)

The final feature vector is ready as input for several different classifiers like k–Nearest
Neighbor (kNN), Decision Trees or Random Forests or Support Vector Machines (SVMs).
Examples of document classification studies utilizing these machine learning techniques
are the works by Chen and Ho [CH00] and Leopold and Kindermann [LK02].

2.3.5. Multilabel Classification & Hierarchical Taxonomy

Much research was done on the topic of labeling data with two or more categories. This was
done in different research areas like document and multimedia classification. Especially
in the task of topic prediction or tag assignment often a single topic or tag to describe
some data is not enough. Tagging such data with multiple labels can make unusually
hard classification tasks simpler and cover the topics better for searching and indexing.
Another way to organize data and information is to use taxonomic hierarchies, which
provide a more straightforward and understandable view on the data. Many exist on
both topics separately. Interested readers can look into work from Santos and Rodrigues
[SR09] and Punera and Rajan [PR09] for systems combining these two research areas
for multilabel taxonomic classification of textual data. As already shown in Figure 2.4,
multilabel, taxonomic classification and the combination of both have been already utilized
for web video categorization.

2.3.6. Classification

Many different supervised and unsupervised classification methods were already used and
analyzed for genre classification, while retrieval approaches like Content–based Image Re-
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trieval (CBIR) become very popular for web video categorization. These, however, are
beyond the scope of this thesis. Some popular choices of classifiers and examples can be
found in their related work sections of Montagnuolo and Messina [MM07] [MM09]. They
include support vector machines, artificial neural networks, multilayer perceptrons, deci-
sion trees, k–nearest neighbors, HMMs and Gaussian mixture models. Genre classification
performed with hierarchical SVMs is presented by Liu et al. [LYCR05] and Yuan et al.
[YLM+06]. Decision Trees, random forests and SVM will be discussed in detail in the next
chapter as part of our system.
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In this chapter the system for TV genre classification and web video categorization is
presented. The chapter is roughly divided into two parts, the baseline system before the
thesis and the additions and improvements, which are the main part of this thesis. The
system itself is in development since 2009 and was upgraded and improved gradually over
the past years. But since all parts come together for the overall classification system
and the improvements are better understandable in comparison, the baseline system is
described in detail first. After this, the actual work of this thesis is presented in Section
3.2. Figure 3.1 gives an overview of the whole system. For easy understanding and plug–
and–play purposes the system is assembled in modules, inspired from Montagnuolo and
Messina [MM07]. Red modules are newly added to the system as part of the thesis. Blue
modules are modified or improved by this work. However, this chapter focuses on the
theoretical foundation and specifications of the system. Details of the implementation are
presented in Chapter 4.

3.1. Baseline

The baseline system describes the genre classification system before this thesis. In the
following sections the single modules are described separately and in the case of modified
modules in their original state. Over the years the modules have undergone several changes,
while some new modules were added, others were adapted or removed completely. To stay
within the scope of this thesis the baseline system is described in the final state before this
thesis. Earlier evaluation results are presented in Chapter 5 for comparison.

3.1.1. Shot Detection

The main purpose of the shot detection module before this thesis was the computation
of the structural features. The shot detection module is from Ekenel et al. [EFG+07].
The shot detection is capable of detecting simple cuts, fade–in and fade–outs as well as
dissolves, with output of all shot change types and frame numbers.
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Figure 3.1.: Overview of the classification framework highlighting processing steps,

modules and additions by this thesis. Blue symbolizes improved modules, red new ones.

3.1.2. Low–Level Visual Features

Six different low–level visual features, which represent both color and texture information
in the video, are extracted in the visual features module. These are also the features that
were utilized for content–based analysis to detect high–level features and semantic concepts
in videos, as part of the TRECVID evaluation by Ekenel et al. [EFG+07] [EGS08].

Color Descriptors

Color features are one of the most popular visual features in the area of image retrieval,
since color features are less dependent on the size, direction, and view point of images
compared to other visual features. The three color features used are:

HSV histogram. Color histograms presented by Swain and Ballard [SB91] are applied in
many image and video retrieval systems. From the HSV color space a histogram is
built with 162 bins utilizing all three channels. Hue (H) values, which represent the
color information are quantized more precisely, 18 bins for the ”H” channel, 3 bins
for the saturation (S) channel, and 3 bins for the value (V) channel.

Color moments. The first three color moments from Stricker and Orengo [SO95], mean,
variance and skewness are used. The image is divided into k × k blocks, and color
moments are extracted from each image block. The final feature vector is obtained
by concatenating the color moments extracted from the blocks, which results in a
9 × k × k feature vector. k is set to k = 5 resulting in a 225–dimensional feature
vector.

Autocolorcorrelogram. The color correlogram was proposed by Huang et al. [HKM+97] to
characterize not only the color distributions of pixels, but also the spatial correlation
between pairs of colors. A color correlogram is a table indexed by color pairs, where
the k-th entry for (i, j) specifies the probability of finding a pixel of color j at a
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distance k from a pixel of color i in the image. Let I represent the entire set of
image pixels and Ic(i) represent the set of pixels whose colors are c(i). If we would
consider all the possible combinations of color pairs, the size of the color correlogram
will be very large. Therefore, a simplified version of the feature called the color
autocorrelogram is often used instead. The color autocorrelogram only captures the
spatial correlation between identical colors and thus reduces the dimension to O(Nd).
64 quantized color bins and five distances are used for this representation.

Texture Descriptors

Texture features are also an important group of image descriptors. Three different types
of texture descriptors are used:

Co-occurrence texture. The implemented algorithm is based on the description given
by Campbell et al. [CHE+06]. Five types of features are extracted from the gray
level co-occurrence matrix (GLCM): entropy, energy, contrast, correlation, and local
homogeneity. Those features are extracted from 24 different GLCMs, in our case
with 8 gray level bins, at different orientations and distances. The resulting vector
is 24× 5 = 120–dimensional.

Wavelet texture grid. The implementation follows the description given in the work of
Campbell et al. [CHE+06], obtaining the variances of the high–frequency sub–bands
of the wavelet transform of each grid region. We used 12 sub-bands (4–level analysis).
The used wavelet basis function is the simple Haar wavelet while the grid has 4×4 =
16 regions. Thus, the resulting vector is 16× 12 = 192–dimensional.

Edge histogram. For the edge histogram, five filters as proposed in the MPEG–7 standard
are used to extract the kind of edge in each region of 2× 2 pixels. Then, those small
regions are grouped in a certain number of areas (4 rows × 4 columns in our case)
and the number of edges matched by each filter (vertical, horizontal, diagonal 45◦,
diagonal 135◦ and non-directional) are counted in the region’s histogram. Thus, the
resulting vector is 4× 4× 5 = 80–dimensional.

3.1.3. Audio Features

As already pointed out in Section 2.3.2 audio is very important in genre classification.
Therefore, it is of paramount importance to utilize audio information in our genre classifi-
cation system. Three features are computed from the audio signal of each video, whereas
additional features can be integrated easily in future work. These features are Mel Fre-
quency Cepstral Coefficients, Signal Energy and Zero Crossing Rate. All features are
computed from a mono–channel audio signal with a 16kHz sample rate and a 256 kbit/s
bit rate.

The single features are computed over small overlapping windows of N = 400 samples and
160 sample–shifts using the Hamming window function. In the following equations m is
the index of the window and sa(n) is the signal at the time index n.

Mel Frequency Cepstral Coefficients. MFCCs are coefficients that make up the mel fre-
quency cepstrum. In the mel scale the frequency bands are logarithmically spaced,
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which approximates the human auditory system and can lead to a better representa-
tion of the signal. In a nutshell, short excerpts of the signal are Fourier transformed
and the log–amplitudes of the power–spectrum are taken. These are mapped onto
the mel scale and DCT is performed. Typically 13 coefficients are used in speech
recognition, while the first five coefficients provide the best genre classification per-
formance in the work of Tzanetakis and Cook [TC02]. The 8th order mel frequency
cepstral coefficients are computed in this system.

Signal Energy Signal energy is defined as the mean square of the amplitude in the current
window:

SP (m) =
1

N

m∑
n=m−N+1

sa(n)2 (3.1)

Zero Crossing Rate The ZCR measures the rate of zero crossings in the amplitude of the
signal, averaged by the length of the frame and is another widely used feature in
speech recognition and music information retrieval. It is easy to compute and, for
example, most indicative and robust to recognize speech in audio signals as shown
by Saunders [Sau96]:

ZCR(m) =
1

N

m∑
n=m−N+1

|sign(sa(n)− sign(sa(n− 1))|
2

(3.2)

Each of these features are used in three different feature vector representations:

1. A single 20–dimensional feature vector consisting of the mean and standard deviation
for each feature over the whole audio signal was chosen for the first representation,
inspired by the work of Lu et al. [LLZ01].

2. One feature vector for each feature is created separately. Mean and standard de-
viation of each feature (2x SP, 2x ZCR, 8 × 2 = 16x MFCC) are computed over a
time frame of one second for the whole audio signal. These values are used as an
input to compute a 10–component Gaussian mixture model. Each Gaussian in the
model is represented by a mean, standard deviation and weight parameter itself.
Therefore each Gaussian has 5 parameters since the mean and standard deviation
of the features have both separate Gaussian mean and standard deviation values.
In case of the MFCC each of the 8 coefficients have its own mean and standard
deviation values which again have their own Gaussian mean and standard deviation
values. This leads to 33 parameters for each Gaussian: (8 × 2 × 2) + 1 = 33. For
SP and ZCR this leads to a 50–dimensional feature vector and in case of MFCC to
a 330–dimensional feature vector.

3. A third representation is computed with a 10–component Gaussian mixture model,
without the intermediate step of computing mean and standard deviation over one
second frames of each feature. Therefore, the feature vectors are 30– and 170–
dimensional consisting of only three parameters for SP and ZCR and 17 parameters
for MFCC features.
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3.1.4. Cognitive Features

Cognitive features are implemented as proposed by Montagnuolo and Messina [MM09]. A
frontal–face detector based on the object–detection framework by Viola and Jones [VJ01]
is used to detect faces represented by rectangles. It is a 22–dimensional feature vector
that consists of four separate statistics about the distribution of the faces in the video.
All statistics are normalized over the duration of the input video measured in frames. Nf

represents the total number of faces, D the duration of the video and W and H represent
the width and height of the frame:

Avg number of faces per frame. The ratio between the total number of faces and the
video duration:

AvgF =
Nf

D
(3.3)

Distribution of the faces per frame. A 11–bin histogram that saves the distribution of
the number of faces per frame. That is, the ith (i = 0, 1, 2, . . . , 9) bin represents the
amount of frames that contain i faces. The amount of frames that contain more than
10 faces are represented in the 11th bin.

Location of the faces in a frame. The third component is a 9–bin histogram that corre-
sponds to the location of the faces in each frame. The frame is divided into 3 × 3
blocks and each bin represents the amount of faces that block contains.

Face covering percentage. The face covering percentage is the ratio between the space
covered with faces and total image space. The face covered space is approximated
with the detected face rectangles. wi and hi represent the width and height of the
face rectangle:

FCP =
100

D ·H ·W

Nf∑
i=1

(wi · hi) (3.4)

3.1.5. Structural Features

The structural feature vector is related to shot editing of the video in terms of duration and
rhythm. It is composed of sub–features proposed by Montagnuolo and Messina [MM07]
[MM09] and 15–dimensional overall:

Avg. shot length. The average shot length gives information about the average rhythm
of the video and is measured in seconds. Fr is the frame rate, Ns the total number
of shots and 4li the individual shot length:

AvgShotLength =
1

Fr ·Ns

Ns∑
i=1

(4li) (3.5)

Shot length distribution. A 9–bin normalized histogram models the shot length distribu-
tion. Bins 1 to 8 represent the range of 0 to 30 seconds uniformly. The last bin
collects shots longer than 30 seconds.

Shot temporal activity. Indicates the shot distribution along the video. This feature is
represented by a 5–bin histogram and a cumulative function, which uniformly collects
the fraction of shots occurring up to duration time t.
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3.1.6. Classification & Fusion

Classification is performed using support vector machine (SVM) classifiers [Vap95] [Bur98].
The one–vs–all strategy is employed to train a binary SVM for each feature and each genre.
The radial basis function (RBF) is used as the kernel:

RBF : K(xi, xj) = exp (−γ ‖ xi − xj ‖2), γ > 0 (3.6)

With SVM classification it is important to determine the optimal parameters for the chosen
kernel function and for the classifier to avoid unsatisfactory results. The first step in this
process is to scale the whole data to a common range of [−1,+1] or [0, 1] depending on the
feature. The RBF function parameter γ and the penalty parameter C > 0 of the error term
need to be optimized for high performance. This step is conducted using a cross–fold valida-
tion scheme on the training data to perform training and classification with different combi-
nations of these two parameters (for example, C = 2−5, 2−3, ..., 215, γ = 2−15, 2−13, ..., 23).
Finally the parameter combination with the highest classification accuracy is used to train
a model on the whole training set. This process is conducted to train all SVMs. No weight-
ing on the training samples is performed during this process. For classification the SVMs
offer the possibility of binary or probabilistic output for each testing sample, enabling
different fusion techniques for classification.

All feature vectors are extracted for one video and fed multiple times to the corresponding
SVM model for each genre, which produce the desired classification output. To get an
overall genre prediction for a video, the single outputs have to be combined. One possibility
is to accumulate all the outputs for each feature in one genre category with both the binary
or probability output and perform majority voting. The genre category with the highest
probability or highest number of features is chosen.

Classification is performed with k–fold cross–validation. The dataset is divided into k
folds. k − 1 folds are dedicated for training and the left out fold for testing. Every fold is
used one time for testing. Final scores are averaged over the folds.

3.2. Extensions and Improvements

This section shows the extensions and improvements to the baseline system. It is divided
into general improvement on the framework, keyframe extraction, new and improved fea-
tures like the SIFT and cognitive modules, and newly added and updated classification
possibilities, the Decision Tree/Random Forest and SVM module.

3.2.1. Framework

Before upgrading the baseline system with concrete improvements for better classification
results, the system was first transferred to an almost completely new framework. The
reason was to benefit from the new library versions of OpenCV1 and OKAPI2 and the im-
provements and modifications made about them. Since this is part of the implementation,
details about the changes and improvements will follow in Chapter 4.

1http://opencv.willowgarage.com/wiki/
2http://cvhci.anthropomatik.kit.edu/okapi/trac/
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3.2. Extensions and Improvements

3.2.2. Keyframe Extraction

Before the re–implementation of the framework for this thesis, the visual, structural and
cognitive features were computed on every frame of an input video. The final feature
vectors were global statistics normalized over the number of frames and were not influenced
by the number of processed frames. The only disadvantage proceeding this way was the
high computation time on video data with long durations and high frame rates.

It is well established in the semantic concept research that single or multiple keyframes are
representative enough for robust classification, decreasing the computational time by sev-
eral magnitudes. This argument also applies to the newly added SIFT feature extraction.
Since the SIFT features generate feature vectors for each processed frame and not one for
the whole video, processing videos on all frames becomes computationally and memory
wise unfeasible. Also no temporal features are used by the system.

Looking at video material, it is easy to understand that visible change to the image source
happens mostly during shot alteration, excluding the fact of long scenes with a lot of
camera movement. Therefore, it is reasonable to extract keyframes on a shot basis for
good representation of a video. In the works of Snoek et al. [SWG+05] [SvdSdR+08] the
MediaMill team showed that multiple keyframes help a great deal for classifying concepts.
Features normalized by the duration of the video in frames will be now normalized by the
number of keyframes.

The keyframe module uses the shot detection output to extract any number of keyframes
for each detected shot. Choosing only one keyframe per shot, the keyframe in the middle of
the shot is extracted. With more than one keyframe per shot the keyframes are distributed
linearly across the shot.

A second option is added to extract any number of keyframes over the whole video without
shot information. Very large videos with thousands of shots make the number of keyframes
still too high for processing. A maximum number of keyframes can be chosen for extraction
and if the number of shots and keyframes per shot exceeds this maximum number, the
maximum number of keyframes are uniformly extracted over the whole video.

3.2.3. SIFT Descriptor

The Scale Invariant Feature Transform (SIFT) descriptor was introduced by Lowe [Low04].
It quickly became one of the most popular features for all kind of image based research. In
combination with bag–of–visual–words representation presented by Sivic and Zisserman
[SZ03], SIFT descriptors showed very promising results and improvement in state–of–the–
art research.

Today many variations of the initial proposed SIFT descriptor exist, varying on the under-
laying color space, different kind of local sampling point strategies and codebook assign-
ment. An extensive overview and evaluation of different SIFT descriptors are presented by
van de Sande et. al [vdSGS10]. SIFT descriptors in many different combinations proven
to be successful in achieving state–of–the–art performance in the TRECVID evaluation
in the last several years. Variations, description and usage of the SIFT descriptors can
be found in work by Snoek et al. [SvdSdR+08] [SvdSdR+10] [SvdSL+11]. An overview of
their SIFT descriptor processing pipeline is given in Figure 3.2.
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SIFT descriptors belong to the category of local features, because they describe a small
local region, for example a local interest point. Among other things they are scale and
rotation invariant as will be clear in the following general description for generating and
using SIFT descriptors presented by Lowe [Low04] and van de Sande et al. [vdSGS10]:

1. Scale–invariant keypoint detection. To compute SIFT descriptors first local interest
points have to be detected. Multiple techniques can be applied. Two of them are
the Harris–Laplace point detector or the dense sampling method. While the Harris–
Laplace detector actually detects interest points in the image (Figure 3.2(b)), the
image is partitioned into small slightly overlapping interest points (Figure 3.2(a))
with dense sampling.

(a)

(b)

Figure 3.2.: (a) SIFT processing pipeline with dense sampling and spatial–pyramid
strategy (b) SIFT processing pipeline with Harris–Laplace interest point detector. Taken

from [vdSGS10].

2. Assigning orientation to the keypoints. Based on local image gradient directions, ori-
entations are assigned to each keypoint. A 36–bin histogram for 360◦ is used while
the orientation with the top magnitude as well as magnitudes up to 80% of the top
magnitude influence the overall orientation of the keypoint.

3. SIFT descriptor generation. The local region around the keypoint is divided into 16×
16 sample arrays, in which gradient magnitudes and orientations are calculated. A
Gaussian window is used to weight the gradient magnitudes. The size is set by the
scale of the keypoint. These orientations are saved in a histogram of 8–bins over
4× 4 regions, see Figure 3.3. The final descriptor is rotation invariant, because the
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keypoint orientation is subtracted from the descriptor. The final representation is
normalized and 128–dimensional (4× 4× 8 = 128).

Figure 3.3.: Keypoint descriptor creation displaying the small sample arrays on the left
and the sub–region orientations and magnitudes on the right. The circle symbolizes the
weighting of the magnitudes of the sample arrays with a Gaussian window. Taken from

[Low04].

4. Bag–of–visual–words model. One way to use SIFT descriptors is to generate bag–
of–words histograms using a codebook of SIFT descriptor clusters like Yang et al.
[YJHN07], representing an image as an histogram of codewords. Visual–bag–of-
words were introduced in 2003 by Sivic and Zisserman [SZ03]. Codebook clusters are
computed using the k–means clustering algorithm with 500, 1,000 or more clusters.
The final histogram is normalized over the number of codewords.

5. Classification. The final feature vector representation is fixed in length for each image
and can be used as input for supervised machine learning algorithms like, for example,
SVMs.

Many parameters influence the overall SIFT descriptor generation process. Possible op-
tions and parameter choices as part of this thesis are presented next:

Keypoint detector. The focus of this thesis lies on the dense sampling detector. Possible
Harris–Laplace interest point detection could be investigated in the future.

SIFT descriptor. van de Sande et al. [vdSGS10] evaluated many different color and
SIFT descriptors. OpponentSIFT and RGB–SIFT achieved the best results. Op-
ponentSIFT and RGB–SIFT descriptors are normal SIFT descriptors computed in
the respective color space channels and concatenated into a single feature vector
(128× 3 = 384). The original SIFT descriptor is computed from gray images. SIFT,
OpponentSIFT and RGB–SIFT are the choices for this genre classification system.

Visual Codebooks. Images will be represented as codeword histograms using the bag–of–
words model. Codebooks will be generated from keyframes available for the respec-
tive datasets used in the evaluation. Details will be presented in Chapter 5.

Codebook Assignment. Typically codewords are assigned to one cluster only (hard as-
signment). The distance to the cluster centers is measured with the Euclidean dis-
tance. van Gemert et al. [vGVSG10] proposed soft codebook assignment of code-
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words to more than one cluster. The focus in this thesis will be on hard assignment
of codewords.

Spatial Pyramid. For natural scene classification Lazebnik et. al. [LSP06] proposed spa-
tial pyramid image partitioning. As shown in Figure 3.2(a) an image can be divided
into different regions where codeword histograms are computed separately and con-
catenated in the end. This method is also applied in the works of Snoek et al. For
this thesis image partitioning into 1× 1, 2× 2 and 1× 3 segments will be included.

The RGB color space is a three channel color space based on the RGB color model. It can
produce any color by combining the three additive base colors red, green and blue. In the
gray color space only one channel is representing the intensity information of each pixel.
It is computed in the following manner from the RGB color space:

Grey = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B (3.7)

The opponent color space has three channels. The intensity channel O3 and the color
information channels O1 and O2. Transformation from RGB to opponent color space is as
follows:

O1 =
R−G√

2
(3.8)

O2 =
R+G− 2B√

6
(3.9)

O3 =
R+G+B√

3
(3.10)

The two main functions of the SIFT module will be described shortly one final time for a
better overview:

Codebook generation. Provided input images (keyframes), a codebook can be generated
extracting SIFT descriptors of every image and performing k–means clustering. Dif-
ferent kind of SIFT descriptors from the options presented above can be used to
generate different codebooks.

SIFT feature generation. Feature computation with the bag–of–words model requires a
codebook for codeword histogram computation. For each keyframe different kind of
SIFT descriptors are computed and a codeword histogram is generated representing
this image using the corresponding codebook. This means that a video represented
by 10 keyframes will produce 10 feature vectors, one for each frame.

3.2.4. Face Detection

The baseline system provided cognitive features based on frontal face detection described
by Viola and Jones [VJ01]. As will be shown in the evaluation in Chapter 5, these
detections include many false positives and false negatives. To analyze the usefulness
of the used cognitive features, a second face detection method is added to compare the
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face detection and cognitive feature results. Face detection using the Modified Census
Transform from Fröba and Ernst [FE04] is added as an option. Past evaluations also
showed that a lot of faces were falsely classified as negative due to slide rotation on the
vertical axis. A second option to include detections of side and profile views of faces is
also added. Details of the implementation will be discussed in Chapter 4.

Haar–like Face Detection. The ground breaking system by Viola and Jones [VJ01] has
four main parts that make it so successful. The Haar like feature shapes as shown
in Figure 3.4(b), the efficient computation of these features with the integral image,
AdaBoost for feature selection and weak classifier training and the classifier cascade
as shown in Figure 3.5 for classification. The training and classification is applied to
24× 24 pixel sub–windows on multiple scales of the image.

(a) MCT Local Structure Features (b) Viola & Jones Rectangle Features

Figure 3.4.: (a) [FE04], (b) [VJ01].

The Haar like features describe the image areas over which the pixel intensities
are summed up respectively. Afterwards the sums of the white and shaded areas are
subtracted from each other. One reason for the very fast computation of these values
and the real–time capabilities of the system is the computation of these areas with
the integral image algorithm. The integral image is a transformation of the image,
where each ‘pixel‘ saves the value of the sum of pixel intensities up to its upper–left
corner. This algorithm makes it possible to calculate the sums of rectangular areas
very fast. It only references the corners of the rectangles since the integral image
already provides the sum of the intensity up to this pixel. To calculate the pixel sum
of one rectangle it takes only four references. Applying this method to the feature
shapes of two, three or four rectangles, only six, eight or nine references are needed.

The second reason for the very robust, efficientl and fast system is the classifier
cascade structure. Each sub window is fed to the cascade for classification. At
each stage of the cascade the sub–image is classified into face or background. If the
sub–image is classified as background, it is discarded at once, if it is classified as a
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Figure 3.5.: Classifier cascade example as in [FE04].

potential face detection, it is passed to the next stage. Only if it reaches the end of
the cascade, it is classified as a face detection. The benefit of this structure lies in
the complexity of each cascade stage. Beginning with a very small feature selection
of two features at the beginning and getting more complex with each stage, it is
possible to discard up to 60% of background sub–windows while keeping 100% of
potential face detections in the first stage very fast. The following stages discard
even more background sub–windows while constantly becoming more complex.

MCT Face Detection. The system by Fröba and Ernst [FE04] is very similar in design
to the work of Viola and Jones [VJ01]. It distinguishes itself only in a few minor
points. Local structures are chosen as features. These structures are calculated on
3×3 pixel neighborhoods using a modified version of the census transform [FE04]. A
subset of all possible structures (29− 1 = 511) is shown in Figure 3.4(a). The census
transform is represented by a bit string, in this case eight bits, saving information
if the surrounding pixels have higher or lower intensity values than the center pixel.
In the modified version all the pixel values including the center pixel are compared
to the mean intensity of the 3× 3 pixel neighborhood.

The training and classification of the system is also carried out with a classifier
cascade of four stages. Classifiers at each stage are trained with a variation of
the boosting algorithm. Like in the work of Viola and Jones [VJ01] background
sub–windows are discarded at each stage, beginning with a very efficient and fast
detecting first–stage classifier. The four stages are very powerful, discarding up to
99% of background images at the first stage, while keeping almost all the possible
face detections.

3.2.5. SVM Module

The SVM module of the baseline system was already fully functioning but was lacking ad-
justment options like training subset generation, weighting of the training classes samples
and weighting of the classification predictions. The first two options are important for the
classification using SIFT features as will become evident in Chapters 4 and 5. Also for
classification of SIFT features the fusion of multiple feature vectors per video is needed.

Basically, it is still the same classification process as described in Section 3.1.6. For
overview purposes the whole new process will be described in detail:

K–Fold generation. K–fold cross validation is performed for all experiments. Videos in
each genre are sorted according to the number of keyframes, so large videos with
many SIFT feature vectors are evenly distributed over all k–folds. Through this,
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the number of positive and negative samples is balanced along the folds. This is
important for the balanced number of positive samples for each fold.

Scaling of the data. After k–fold generation the training and testing data is scaled as
described in Section 3.1.6. Here it is possible to generate subsets of training data to
balance the amount of positive and negative samples and speed–up the grid search
and model training time. With a high number of genres and varying video dura-
tions, positive and negative samples become quickly highly unbalanced. Subsets are
generated taking all positive keyframes from a training file and picking a number of
randomly picked negative keyframes. Possible positive and negative sample ratios
may be 1:1, 1:2 or 1:3. Important is the fact to pick the same random negative
keyframes for all kind of features, especially SIFT features with many samples per
video. Therefore random samples are chosen once for one feature and then the same
samples are used for all the other features.

Training. The individual models are trained the same way as in the baseline system. Now
it is possible to adjust weights to the positive and negative samples to cover imbalance
across the sample data. As proposed by van de Sande et al. [vdSGS10], the positive
and negative samples can be weighted as follows:

Positive weight =
#positive

#positive+ #negative
(3.11)

Negative weight =
#negative

#positive+ #negative
(3.12)

Classification. Prediction of the genre tags for each feature model in each genre has not
changed and is as described in Section 3.1.6 of the baseline system.

Fusion. All features can be distinguished into two groups. One group describes ”global”
features that represent the input video through one feature vector. The other group
of features are the SIFT features. One feature vector for each keyframe of the input
video is extracted. The fusion of these ”global”and SIFT features has to be managed.
This is achieved by averaging the SVM–SIFT predictions over the number of frames
for each SIFT feature for each genre and treating SIFT features as any other ”global”
feature. New to the fusion process is the option to weight the predictions of the SVM
models using weights for the individual features. These feature weights are the same
for all genres. Adjusting weights also to genres could be evaluated in future work.

3.2.6. Decision Tree/Random Forest Classification

In the early versions of our system we experimented with Multilayer Perceptrons like
Montagnuolo and Messina [MM07] and switched to SVMs achieving better classification
results (presented in Table 5.4). In this thesis the evaluation of Decision Tree and Random
Forest classifiers will be analyzed as part of our system. Evaluation will be performed both
on old and new datasets for comparison.

Decision Tree classification dates back to the 1980s, where Breiman et al. [BFOS84] intro-
duced Classification and Regression Trees. For many years the C4.5 algorithm by Quin-
lan [Qui93] for improving decision tree training was very popular until Random Decision
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Forests were introduced by Tin Kam Ho [Ho95] in 1995. Many researches have presented
better classification results using random forests over C4.5 Decision Trees. Today Decision
Trees and Random Forests are still very popular choices for supervised classifiers and quite
recently contributed to one of the biggest success stories, the development of the Microsoft
Kinect3.

For an up–to–date extensive look and introduction to Decision Trees and Random Forests
the reader is encouraged to read [CSK11] by Criminisi et. al. The work offers extensive
related work overview, Decision Tree and Random Forest mode of operation and examples
for different kind of tasks like classification, regression, density estimation and manifold
learning. Furthermore, it provides an in depth evaluation of the most important param-
eters and their influence on classifier training on all tasks. The following introduction to
Decision Trees and Random Forests is inspired by their work.

Decision Tree. A basic type of a binary tree, where each internal node (including the root
node) has two outgoing edges, as shown in Figure 3.6(a). Trees are shapes of nodes
and edges, containing no loops and each node has only one incoming edge. Like the
name is suggesting the Decision Tree is used to make a decision about a specific
problem. Starting at the root node the problem is propagated through the nodes
until it arrives at a leaf node were the result decision is predicted. At each internal
node the problem gets analyzed by specific rules and propagated to the left or the
right edge depending on the result.

0 

1 2 

4 5 6 3 

Binary tree structure 

Split nodes Decision route 

Leaf node 

(a) Decision Tree

0 

1 2 

4 5 6 3 

Can I go to the beach? 

Do I have the 
free time? 

Is the weather 
good ? 

yes no 

no 

no yes 

yes 

yes 

no 
no 

yes 

Do I care for 
the weather? 

(b) Decision Example

Figure 3.6.: (a) General shape of a binary Decision Tree. Internal nodes and root node
are split nodes. Leaf nodes are terminal nodes with decision output. Example path of

classification route is marked red. (b) Decision Tree example with results.

For better understanding a decision tree can be viewed as an hierarchical problem
solver that divides one problem into several small problems, which are easier to
solve at each internal node. An example is given in Figure 3.6(b). The main issue
in decision tree building (training) is the establishment of the split node decision
functions and the predictions in the leaf nodes through training samples.

3Microsoft Corp. Redmond WA. Kinect for XBox 360.
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3.2. Extensions and Improvements

In mathematical problems and notations the input for a classification can be a nu-
merical feature vector and the output a numerical value (class label). Training is
performed optimizing the parameters of the split functions in the split nodes using
the training feature vectors. Propagating the training data, the data gets separated
at each internal node until a minimum number is reached or class prediction is pos-
sible with a certain amount of confidence. For example information gain, IG, can
be used as a measure for optimal node parameters:

IG = H(S)−
∑

i∈{1,2}

|Si|
|S|

H(Si) (3.13)

H(S) can be the Shannon entropy for example, defined asH(S) = −
∑
c∈C

p(c)log(p(c)).

S denotes the samples reaching this node, S1 and S2 are the samples leaving the
node on one of the two edges. Different training stopping criteria can be chosen, for
example when the tree reaches a maximum number of levels, a minimum information
gain is reached or a specific minimum of training samples is reached after a split at
an internal node.

Random Forests. Random Decision Forests are an ensemble of Decision Trees. The for-
est is called random because each tree is trained randomly with a specific value
of randomness. This approach affects the randomness and difference of the single
trees and has proven that different trees in a forest improve generalization capabili-
ties. Randomness can be achieved by splitting the training data across trees and/or
randomized node parameter optimization, where a smaller subset of all parameter
possibilities is available in training for a specific tree. New parameters for Random
Forest training and termination are the amount of randomness and the number of
trees in the forest among others. For classification each test sample is pushed through
all the trees in the forest. All tree predictions are collected for one overall forest pre-
diction. Majority voting is performed over the returned class labels to predict the
final class prediction.

Our system is extended with a Decision Tree/Random Forest module, similar in function
of the SVM module. Instead of binary classification the multiclass classification is utilized,
reducing the training time and number of classifiers by the magnitude of genres to clas-
sify. As proven by Criminisi et al. [CSK11] optimal parameter selection is key for good
classification results. These details are described in Chapters 4 and 5.
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4. Implementation

This chapter presents implementation details of the genre classification system described
in Chapter 3. It lists the used programming languages and libraries as well as their possible
parameter choices and the options chosen in our framework. Parameters and their values
chosen for the evaluation are listed in Chapter 5.

4.1. Framework Design

The system can be divided into four parts. A system overview is shown in Figure 3.1.

C++ Framework. The main part of the whole system is written in C++ and can be
viewed as a classification framework. Two libraries and one external binary are used
with this framework. The two libraries are the OpenCV library and the OKAPI
library. The external binary used is the colorDescriptor Software1 for SIFT descriptor
computation made available by van de Sande [vdSGS10].

The main modules of the C++ Framework are the keyframe extraction, visual, cog-
nitive, structural and SIFT feature extraction, and the decision tree/random forest
classification module.

OpenCV. The OpenCV library [Bra00] is the most well known computer vision li-
brary. Today it features a large number of functions like image processing,
gui and media i/o, object detection (cascade classifiers), feature detection (key-
points detection and SIFT descriptors) and machine learning algorithms (Bayes,
kNN, SVM, decision trees/random forest, boosting, ANN and EM).

OKAPI. OKAPI (Open Karlsruhe Library for Processing Images) [Oka12] is a C++
library from the Institute of Anthropomatics at the KIT for image processing
and has been designed to be used in conjunction with OpenCV. It offers very
useful utility and system functions and more important implementations of
image and video i/o, camera interfaces, object detectors (MCT face detection),

1http://koen.me/research/colordescriptors/
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4. Implementation

features (DCT, Gabor, PCA) and classifiers (SVM). OKAPI uses the CMake2

build system and is operational on Windows, Linux and MacOS.

C++ shot boundary. The shot boundary module is separate, written in C++ and also
built with OKAPI. It produces .xml shot detection files for each input video (see
Appendix A).

MATLAB audio module. For fast and easy audio analysis MATLAB3 [MAT10] and the
VOICEBOX4 Toolkit were chosen. They provide easy and powerful tools for audio
analysis like audio signal processing, window functions, features like MFCCs and
GMM modeling.

Python SVM classification. Python5 [Pyt11] was chosen for SVM classification because of
the provided scripts and tools by the libSVM6 library [CL11]. The libSVM software
comes with SVM training, prediction and scaling binaries, and also subset creation
and grid search python scripts.

4.2. Configuration

The main framework of the genre system uses a .xml configuration file, where all important
parameters can be set before running the system. An example of a possible configuration
can be found in Appendix B. It is roughly divided into five parts. The following detailed
look also explains the functionality of the framework. A framework folder structure is
shown in Appendix C:

4.2.1. Main module

Source. The main C++ framework part works only on the extracted keyframes of each
video. The possibility to set the source to video enables the extraction of the
keyframes first. All other operations are performed on keyframes.

Keyframes. For keyframe extraction the number of keyframes per shot, the maximum
number of keyframes per video and the extraction type can be chosen. The keyframes
can be extracted in three different types. The default way is to specify a number of
keyframes to be extracted for each shot. For long videos the number of frames may
be too high for processing, therefore two options were added to limit the keyframe
extraction to a specified number of frames overall. Either the maximum number of
keyframes can be uniformly extracted over the whole video or a combination of the
first and second option can be used. In this case the keyframes are extracted for each
shot and only overall, if the maximum number of allowed keyframes is exceeded by
number of shots× number of keyframes per shot.

Extraction. Each feature category (visual, cognitive, structural, SIFT) can be enabled or
disabled. While visual and cognitive feature extraction does not need any further
parameters, SIFT and face detection modules have separate options.

2http://www.cmake.org/
3http://www.mathworks.de/products/matlab/
4http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
5http://www.python.org/
6http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Face Detection. The parameters for MCT or Haar cascade face detection are the
same. Each type can be enabled or disabled. For each type frontal and/or
side view face detection can be chosen. For Haar cascade face detection profile
view cascades are available, for MCT face detection ±45o side view models are
already pre–trained. Paths for the trained classifier models have to be specified.
For evaluation the option to save images with face detection rectangles of all
enabled face detectors can be activated (see Appendix. D).

SIFT. The SIFT options can be divided into SIFT codebook generation and SIFT
feature extraction. The SIFT feature extraction options directly influence the
codebook generation.

The codebook generation can be enabled or disabled. The desired number of
clusters (codewords) and the number of input samples can be set. The k–means
algorithm can be modified with different parameters like the choice of iterations
and cluster center initialization types.

The SIFT feature extraction can be enabled or disabled. The keypoint detector
strategy can be selected between Harris–Laplace or dense sampling, though
Harris–Laplace is not supported yet. Further options for dense sampling are
pixel space and scale. The three descriptors SIFT, OpponentSIFT and RGB–
SIFT are available for choosing. And finally the feature extraction with spatial
pyramid support can be selected. The possibilities are 1 × 1, 1 × 1–2 × 2 and
1×1–2×2–1×3. For example the third option means that features are extracted
for all three spatial pyramid types at once. These parameters come from the
colorDescriptors binary. The whole functionality of this software is described
here7.

Decision Trees/Random Forests. The classification with decision trees and random forests
is heavily linked to the SVM classification module, the generated output and folder
structure. The input for the tree classification are the scaled input files of the SVM
module. The tree and forest parameters from OpenCV are hardcoded into the sys-
tem and will be available for choosing in the configuration in the future. Following
options are available for the decision tree/random forest classification in the frame-
work configuration file. The module can be activated or deactivated. It is possible
to use decision trees and random forests at the same time or separately. The user
can decide to train models for the selected classifiers or use already trained models
for class prediction. For the difference in training time of ‘global‘ features compared
to SIFT features, which take a lot more time, the option to select either set of fea-
tures or the combination was added. Individual feature prediction has to be done
manually. The module was designed to support k–fold cross evaluation. K–fold data
is created with the already existing SVM classification script. Therefore the number
of k–folds used for the SVM data creation has to be specified. The dataset for pro-
cessing has to be chosen, since the number of genres and the genres themselves are
not automatically recognized. Classification is performed in multiclass fashion with
class label outputs. The trees can also be used as binary classifiers with probability
output but this option is not implemented, yet.

7http://koen.me/research/colordescriptors/readme
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The OpenCV implementation of decision trees and random forest includes many pa-
rameters. They influence the training stage and classification quality of the classifiers
and are specifically chosen for the evaluation in Chapter 5:

• Decision Tree:

– Max depth: The maximum possible depth of the tree. Can be smaller if
other termination criteria are met or the tree is pruned.

– Min sample count: The nodes will not be split if the number of samples
reach this minimum at a node.

– Regression accuracy: Termination criteria for regression trees. Not impor-
tant for classification and set to null.

– Use surrogate splits: If true then surrogate splits will be build. These splits
are important to compute variable importance correctly.

– Max number of categories: Cluster possible values of a categorical variables
into K ≤ max categories clusters to find a suboptimal split.

– Number of cross–validation folds: If ≥ 1 then the tree is pruned with k–fold
cross–validation.

– 1SE rule (smaller tree): If true then pruning will be harsher, which makes
the tree more compact, more resistant to training data noise but also less
accurate.

– Truncate tree branches: If true the pruned branches are physically removed
from the tree.

– Priors: The array of a priori class probabilities, sorted by the class label
value (not used).

• Random Forest:

– Max depth: The maximum possible depth of the tree. Can be smaller if
other termination criteria are met or the tree is pruned.

– Min sample count: The nodes will not be split if the number of samples
reach this minimum at a node.

– Regression accuracy: Termination criteria for regression trees. Not impor-
tant for classification and set to null.

– Use surrogate splits: If true then surrogate splits will be build. These splits
are important to compute variable importance correctly.

– Max number of categories: Cluster possible values of a categorical variable
into K ≤ maxcategories clusters to find a suboptimal split.

– Priors: The array of a priori class probabilities, sorted by the class label
value (not used).

– Variable importance: If true then variable importance will be calculated.
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– Nactive Vars: The size of the randomly selected subset of features at each
tree node and that are used to find the best split(s). If you set it to 0 then
the size will be set to the square root of the total number of features.

– Max number of trees: The maximum number of trees in the forest.

– Forest accuracy: Sufficient forest accuracy for termination criteria.

– Termination criteria:

∗ Terminate learning by reaching the maximum number of trees in the
forest.

∗ Terminate learning when the sufficient forest accuracy reached.

∗ Use of both criteria depending on which is met first.

4.2.2. Audio Feature Extraction

As already mentioned the audio feature extraction is implemented in MATLAB utilizing
the VOICEBOX Toolkit. The feature extraction is performed on .wav files extracted from
the video. Their specifics are described in Section 3.1.3. The audio feature extraction
itself provides some parameters and options. First the desired features and feature repre-
sentations can be selected. It is possible to compute one feature in one representation, all
features with all representations at the same time or any user–defined combination. The
window function (Hamming or Rectangle), the size of the window (number of samples)
and the shift size (in samples) are also available options.

4.2.3. SVM Classification

The SVM classification module consists of several scripts and the SVM training, testing
and scaling binaries. The different scripts are described next:

py create SVM input.py The extracted features of each video have to be first accumu-
lated together and transformed into a specific format the libSVM software supports.
With this process several statistics are collected that are necessary for classification.
Part of these statistics are the number of videos for each genre and the groundtruth
for each video. For SIFT classification the groundtruth and number of frames for
each video are saved as well. Since SVM classification is performed as binary classi-
fication, files and groundtruths for each available genre are created, too.

py subset.py The script can be used to generate subsets of training data like previously
explained. The script provided by the libSVM library was modified for the subset
options described earlier, namely, selecting all positive samples and a random but
repeatable relative number of negative samples (see Section 3.2.5).

py grid.py The script provided by libSVM performs the grid parameter search for the
SVM model training. Parameters like class weights can be passed. The grid search
is performed with different parameter combinations and on a predefined number
of k–folds. These values, the k–fold number and parameter ranges of the RBF
kernel parameters can be selected. Default values are 5–fold and 110 parameter
combinations.
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py tvgenre.py This is the global SVM classification script utilizing all the other scripts and
performing all of the SVM classification duties like, k–fold creation, scaling, training,
predicting and results fusion. The separate steps can be performed together or one
by one to avoid re–doing unnecessary steps again to save computational time, which
is very important especially for model training. It produces overall classification
accuracy, single feature accuracies, a genre confusion matrix and much more detailed
information, if needed. Most important are the number of desired k–folds and the
dataset to use. All features can be enabled individually for specific model training or
class prediction and fusion. Manual weights can be assigned to them. As described
in Section 3.2.5, class weights for grid search and model training can be used. For
prediction the SVM output can be probability or binary values. They can be fused
in majority voting or max rule fashion. It is also possible to fuse results from trained
models, from subsets of training data and models trained on all training data. The
subset option is mainly used to reduce the long SVM grid search and model training
time. Therefore, ‘global‘ features can be predicted with normal SVM models, while
SIFT features get predicted with SVM models trained on subsets.
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To evaluate the new genre classification system in both the TV and web domain and to be
able to compare the results to the old baseline system, two old TV and one new YouTube
dataset will be used. Old results can be compared on the TV datasets and the more
interesting evaluation of web video domain material and categories will be carried out on
the most recent taxonomy of YouTube categories. The organization of this chapter is as
follows. First the datasets will be described in Section 5.1 in detail, followed by a precise
specification of the system’s parameter choices for this evaluation in Section 5.2. Then,

Table 5.1.: Number of genre videos and durations in the datasets.

RAI Quaero 2010 YouTube
Genre # hh:mm # hh:mm Category # hh:mm

Cartoon 27 07:13 3 01:0 Activism 50 12:39
Commercial 58 03:04 126 05:20 Animals 50 07:56

Documentary - - 12 04:55 Autos 50 13:17
Football 22 17:41 - - Comedy 50 04:31
Magazine - - 27 12:07 Education 50 15:09

Movie - - 30 17:51 Entertainment 50 04:06
Music Show 7 00:36 - - Film 50 07:01

News 49 17:19 18 07:03 Games 50 07:16
Show Games - - 23 09:20 Howto 50 12:01
Talk Show 38 21:06 6 09:12 News 50 09:32
Traffic For. - - 20 00.35 People 50 03:39

Weather For. 60 01:52 37 01:38 Science 50 05:41
- - - - - Sports 50 05:11
- - - - - Travel 50 05:54

Total duration - 69:27 - 69:07 - - 113:59
Total # 261 - 302 - - 700 -
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the results for each dataset will be presented in Section 5.3.

5.1. Datasets

The three datasets contain different genres, different number of genres and different number
of videos per genre. The two TV datasets, RAI (Italian TV) as used by Montagnuolo and
Messina [MM07] [MM09] and Quaero (French TV) have overlapping genres and almost
the same number of videos and same overall duration. The web video domain dataset
from YouTube has completely different categories from the TV domain and overall twice
as much videos and double the amount of overall duration. This information is presented
in Table 5.1.

5.1.1. Italian TV broadcast

The RAI dataset consists of 261 videos from 7 genres collected from three Italian TV
channels, RAI1–RAI3. These genres are cartoon, commercial, football, music, news, talk
show and weather forecast. The number of individual videos per genre as well as their
duration can be found in Table 5.1. The average cartoon runtime is about 16 minutes.
Commercials and weather forecast videos are the shortest in average with 2 minutes, and
football and talk show, the categories with the longest videos, are 46 and 33 minutes in
average, respectively. An example frame of each genre is shown in Figure 5.1. The variation
within the genres is very little compared to the YouTube dataset as will be shown in Section
5.1.3. This is the same dataset as used by Montagnuolo and Messina [MM07] [MM09] on
their state–of–the–art system and is one of the largest collections of TV broadcasting. It
was the very first dataset containing entire programs, instead of having short clips from
them. It also enabled us to compare results with their system (see Table. 5.4).

(a) Cartoon (b) Commercial (c) Football (d) Music

(e) News (f) Talkshow (g) Weather

Figure 5.1.: Sample frames from the RAI dataset
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5.1.2. French TV broadcast

The Quaero dataset is a week of broadcasting from one French TV channel. The 10 genres
are: cartoons, commercials, documentary, magazine, movie, news, show games, talk show,
traffic forecast and weather forecast. The genre sample frames can be found in Figure 5.2.
Compared to the RAI dataset, the Quaero data offers a more complete view on one TV
channel and its program from one week of broadcasting. This dataset was also used in
earlier evaluations and results will be compared to the new system as well in Section 5.3.2.

(a) Cartoon (b) Commercial (c) Documentary (d) Magazine

(e) Movie (f) News (g) Show Games (h) Talk Show

(i) Traffic Forecast (j) Weather Forecast

Figure 5.2.: Sample frames from the Quaero 2010 evaluation dataset

5.1.3. YouTube

To evaluate the genre classification system on a collection of web videos, we benefit from
YouTube. Videos were collected from all the 14 top–level categories YouTube offers on
its categories page1 early 2012. These categories are activism, animals, autos, comedy,
education, entertainment, film, games, howto, news, people, science, sports and travel. The
difference between TV genres and web video categories is distinctive. The only categories
overlapping are news and sports. The other categories have more resemblance to topics
and not so much with an underlying genre. The difference between topics and genres is
that a topic or category in this case, like autos, can contain all kind of videos not bound
to any genre styles. Videos can be about people talking about cars, showing races or
auto shops and car engines. This shows the difficulty of web video categorization and the
difference to TV genre classification. Sample pictures of all categories are given in Figure
5.3. A larger selection for each category is presented in Appendix E. Even for humans
some samples prove to be difficult to assign the correct category tag to.

1http://www.youtube.com/videos?feature=mh
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(a) Activism (b) Animals (c) Autos (d) Comedy

(e) Education (f) Entertainment (g) Film (h) Games

(i) Howto (j) News (k) People (l) Science

(m) Sports (n) Travel

Figure 5.3.: Sample frames from the YouTube evaluation dataset. More samples for
diversity comparison in Appendix E

The dataset was collected downloading 50 clips of each category using the YouTube API2.
Searching was performed with an empty search tag and the search category set for each
individual category. This process was repeated several times to eliminate very small and
very long clips, with durations over two hours and under 3 seconds. A total of 700 videos
with a duration of 114 hours was collected (see. Table 5.1).

YouTube changed its categories over the years. This leads to unreliable metadata infor-
mation coming with the videos, since they were categorized in a category that no longer
exists. An example for this is music videos which have the category tag music assigned
to them but are found using the entertainment category tag for search. Therefore, the
groundtruth is chosen as the category search term in the YouTube API for the respec-
tive search results. This approach ensures a realistic view on the web video classification
problem with already chosen category labels from YouTube.

2https://developers.google.com/youtube/?hl=de-DE
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Table 5.2.: Random Forest parameter combinations for the evaluation of each dataset.

Random Forest Default Example Choice

Max depth 5 10 25
Min sample count 10 10 1
Reg. accuracy 0 0 0
Surrogate split true true true
Max categories 10 15 14
Priors 0 0 0
Var importance true true true
Nactive vars 0 4 0
Max trees 50 100 250
Forest accuracy 0.1 0.01 0.01
Term criteria Max trees | Max trees Max trees |

Forest accuracy Forest accuracy

5.2. Setup

The implementation details and configuration options were already presented in Chapter
4. But with the three large datasets, with the total amount of 250 hours, the various SIFT
features and the various classification methods for training and evaluation, the number
of keyframes, parameter options and configurations have to be minimized to make the
computation time affordable.

5.2.1. Dataset Constraints

After extracting one and three keyframes per shot from all videos of the YouTube dataset
and one keyframe per shot for the two TV datasets respectively, over 450, 000 keyframes
were extracted, generating over 500 GBs of extracted features data, 99% of the amount
coming from the extracted SIFT features. This number was computational and memory
wise too high for processing. The global features extracted were kept for all video files, but
the evaluation with three keyframes per shot was dropped. Furthermore, the maximum
number of keyframes that SIFT features are extracted from per video was limited to 100
per video for the two TV datasets and 50 per video for the YouTube dataset.

5.2.2. Parameter Choices

This section will present the exact evaluation specifications, which differ for the various
datasets. The YouTube dataset is considered the most important one to analyze and,
therefore, lies in the focus of the evaluation. Not all SIFT descriptors are evaluated for
the two TV datasets. The features used will be mentioned in the appropriate sections of
the datasets.

Face detection. Cognitive features are extracted in four different types. Both, MCT and
Haar cascade face detection is used, one time using only frontal face detectors and
one time in combination with profile and side view detectors.
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Table 5.3.: Decision Tree parameter combinations for the evaluation of each dataset.

Decision Tree Default Example Choice

Max depth INT MAX 25 INT MAX
Min sample count 10 5 1
Reg. accuracy 0 0 0
Surrogate split true true true
Max categories 10 15 14
K–fold validation 10 15 0
1SE rule true false false
Truncate tree true false false
Priors 0 0 0

SIFT codebooks. Codebooks for the three SIFT descriptors are created using the fol-
lowing values: 250,000 samples for clustering of 1,000 codewords. Clustering is
performed with k–means in three iterations and three different cluster center initial-
izations and the KMEANS PP CEN-TERS 3 OpenCV parameter option.

SIFT descriptors. For each available SIFT descriptor, SIFT, OpponentSIFT and RGB–
SIFT, features are extracted using the default settings for dense sampling (scale =
1.2 and pixel space = 6 with the 1× 1–2× 2 spatial pyramid option. This produces
1000–dimensional and 4000–dimensional feature vectors for the spatial pyramid.

SVM parameters. 3–fold cross–validation is used for all three datasets. Training and
testing files are scaled. For the tree classifiers the unscaled input files are use. For
the classification of the SIFT features with SVMs, subsets for SVM grid search and
training a created. The subsets are created with a pos/neg ratio of 1:3. For SVM
prediction the predicted classes from the ‘global‘ features (see Section 3.2.5) and the
SIFT features are fused. Grid search and SVM model training is further performed
without class weighting. Grid search parameters are optimized for faster search,
which means 3–fold instead of 5–fold validation and 42 instead of 110 parameter
combinations are computed. This step was necessary to further reduce the SIFT
SVM training time which has to be conducted for every genre. Only probability
output is evaluated at this point.

Decision Tree/Random Forest. As for the SVM classifier the optimal parameter com-
bination can not be defined individually. A grid search with several combinations
would be best but was not available at the time of the evaluation. Therefore, three
combinations of the available OpenCV parameters were tested. The variable impor-
tance is calculated always for decision tree classifiers. The first setting is the default
OpenCV setting for these two classifiers. The second setting comes from the exam-
ples in the OpenCV package4 and one example found on the world wide web5 and
the final setting was chosen personally. These values are presented in Table 5.2 and
Table 5.3.

3Uses k–means++ center initialization by Arthur and Vassilvitskii
4samples/letter recog.cpp
5http://public.cranfield.ac.uk/c5354/teaching/ml/examples/c++/speech_ex/decisiontree.cpp
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5.3. Evaluation Results

This section presents the evaluation results on the three datasets. For each dataset the
same information will be analyzed. First, an overview table highlighting overall accuracies
from different parameter combinations as well as best baseline and extended system results,
if available. Furthermore, confusion matrices for each classifier are presented to investigate
classification performance on each genre or category and finally, single feature classification
accuracies are presented for each genre computed with every classifier. Tree classifier
results are presented only for the ‘choice‘ parameter set since it always achieved the best
results. Including the results of the other two parameter sets would be out of the scope of
this thesis. Additional information like face detection samples and tree classifier structure
example and tree classifier results can be found in the Appendix.

5.3.1. Italian RAI results

Table 5.4.: Average classification rates obtained on the RAI dataset. Comparison of
classifiers, keyframe and SIFT descriptor influence. Best overall results are presented

bolt. All available features are listed in Table 5.6

Classifier System Class. Rate

Baseline on all frames
99.6%

(Aural + Cognitive + Structural + Visual)

SVM
Extended on keyframes

97.7%
(Aural + Cognitive + Structural + Visual)

Extended on keyframes
97.3%

(Aural + Cognitive + Structural + Visual + SIFT)

Baseline on all frames
97.3%

(Aural + Cognitive + Structural + Visual)

Random Forest Extended on keyframes
94.3%

Choice parameter set (Aural + Cognitive + Structural + Visual)

Extended on keyframes
94.6%

(Aural + Cognitive + Structural + Visual + SIFT)

Baseline on all frames
96.2%

(Aural + Cognitive + Structural + Visual)

Decision Tree Extended on keyframes
95.4%

Choice parameter set (Aural + Cognitive + Structural + Visual)

Extended on keyframes
95.8%

(Aural + Cognitive + Structural + Visual + SIFT)

SVM
Extended on keyframes

98.1%
(all available features)

Overall the Italian RAI dataset achieves the best classification rates. An overview is given
in Table 5.4. The first row shows the highest classification accuracy achieved with the
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baseline system. A rate of 99.6% is obtained using all modalities, extracting features on
all frames and performing classification with SVM classifiers. In comparison the extended
system achieves an overall best accuracy of 98.1%, using all available features and SVM
classifiers. The list of all available features is shown in Table 5.6. The drop in accuracy
may have two reasons. First, the table shows that changing the extended system to
keyframe extraction (2nd row) and using the same set of features and SVM classifiers, the
performance drops to 97.7%. Second, including SIFT features the performance drops even
more to 97.3%. Comparing these results clearly shows, that classification results vary with
the fusion of different features. Many combinations were evaluated for this thesis. For
the RAI dataset using all features proved most successfull for the extended system. This
differs for the two other datasets as will be shown in the following subsections.

Single performances of each feature, which are dependent on frame input as shown in Table
5.7, show, that the visual features vary only slightly in performance on the RAI and Quaero
dataset when using different numbers of input frames. By contrast, the cognitive feature
performance drops around 10% on both datasets. The cognitive statstics are derived from
the usage of the frontal OpenCV face detector. From this it follows, that performing face
detection on keyframes alone is not a reasonable approach.

Table 5.5.: Confusion matrix obtained on the RAI dataset using the extended system and
SVMs (%). Genre confusions over 15% are boxed for visualization purposes.

Ca Co Fo Mu Ne Ta We

Ca 100 0.0 0.0 0.0 0.0 0.0 0.0
Co 0.0 100 0.0 0.0 0.0 0.0 0.0
Fo 0.0 0.0 100 0.0 0.0 0.0 0.0

Mu 0.0 14.3 0.0 28.5 14.3 0.0 42.9
Ne 0.0 0.0 0.0 0.0 100 0.0 0.0
Ta 0.0 0.0 0.0 0.0 0.0 100 0.0
We 0.0 0.0 0.0 0.0 0.0 0.0 100

Table 5.5 shows the confusion matrix for the extended system with SVM classifiers, the best
new system as presented in Table 5.4. Confusion matrices of the tree classifiers are shown
in the Appendix. Interesting is the fact, that decision trees perform better than random
forest classifiers using the extended system. The genres and data in the RAI dataset seem
easy enough to use decision tree classification, which performs model computation in a
fraction of the time compared to SVM or Random Forest training. The small performance
drop is acceptable if computation speed is a more important factor. In any case the SIFT
features do not enhance the performance anymore and each genre shows best results using
SVM classifiers, followed by decision trees and finally random forests. Only using SVM
classifiers all genres except music achieve a 100% classification rate.

Individual feature performances on the RAI dataset are presented in the Table 5.6 for
the best extended system. Tables for the other classifiers are presented in the Appendix.
Looking at the aural feature and the music genre in Table 5.6 one notices, that an accuracy
of 71.4% is reached. Comparing this to the confusion matrix rate for music (28.5%), the
numbers confirm the possible performance drop while using different features and fusing
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Table 5.6.: Single feature accuracy on the RAI dataset using the extended system and
SVM (%). Bold values display the best genre for each feature. Values with a box display

the best feature for each genre.

Ca Co Fo Mu Ne Ta We Avg

Aural 92.6 96.6 100 71.4 91.8 100 98.3 95.8

MFCC 2 81.5 91.4 100 42.9 85.7 68.4 90.0 85.1

MFCC 3 22.2 91.4 100 0.0 83.7 52.6 78.3 72.4

SP 2 0.0 24.1 4.6 0.0 42.9 26.3 48.3 28.7
SP 3 3.7 67.2 4.6 0.0 8.2 5.3 43.3 28.1

ZCR 2 40.7 48.3 9.1 0.0 26.5 0.0 88.3 41.0
ZCR 3 0.0 51.7 0.0 0.0 8.2 26.3 66.7 32.2

Auto Color 63.0 98.3 90.9 42.9 95.9 79.0 100 89.6

Color Mom 85.2 94.8 100 57.1 95.9 92.1 98.3 93.9

HSV Hist 74.1 98.3 90.9 42.9 95.9 84.2 100 91.6

CoOccurrence 74.1 100 90.9 0.0 95.9 79.0 100 90.1

Edge Hist 96.3 94.3 90.9 0.0 93.9 81.6 100 91.2

Wavelet 96.3 100 100 28.6 95.9 81.6 96.7 93.5

Struct 37.0 100 72.7 0.0 87.8 71.1 96.7 81.3

Haar Front 14.8 84.5 54.6 0.0 61.2 86.8 96.7 71.2
Haar + Profile 44.4 65.5 86.4 0.0 63.3 92.1 91.7 72.8
MCT Front 14.8 82.8 86.4 14.3 71.4 76.3 83.3 71.3
MCT + Side 33.3 79.3 86.4 0.0 83.7 86.8 90.0 77.4

SIFT 1x1 - - - - - - - -
SIFT 2x2 - - - - - - - -

rgbSIFT 1x1 96.3 100 100 57.1 100 89.5 96.7 96.1

rgbSIFT 2x2 100 100 100 42.9 100 92.1 98.3 96.9

oppSIFT 1x1 100 100 100 57.1 100 81.6 98.3 95.8
oppSIFT 2x2 - - - - - - - -

them in different combinations. This phenomenon can be sighted over all experiments as
will be shown in the results on the two other datasets. This may indicate that individual
feature combinations for each genre or category might improve the system performance. All
single feature tables highlight the fact, that most features perform best on the commercial
and weather forecast genre. The aural feature performs best for music, while SIFT features
completely fail for the music genre using tree classifiers and perform a lot worse using SVM
classifiers compared to all other genres. Overall all features except aural perform very bad
for the music genre, which may be result of the very small number of videos in this genre.
Cognitive features show most promissing results on weather forecast and visual features
perform very good over all genres, in case of using tree classifiers even better than the
SIFT descriptors. For the cartoon genre the SIFT features provide the most promissing
results for all classifiers. Overall the SIFT descriptors have the highest accuracy rates over
all genres.
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Table 5.7.: Comparison of feature extraction on all frames and only on keyframes using
SVM classifiers.

RAI all frames RAI keyframes Quaero all frames Quaero keyframes

AutoColor 83% 89% 85% 89%

ColorMom 95% 93% 91% 91%

CoOccurence 89% 90% 83% 78%

Edge Hist 93% 91% 88% 91%

HSV Hist 92% 91% 86% 88%

Wavelet 96% 93% 90% 91%

Cognitive 82% 71% 77% 66%

5.3.2. French TV Results

The overview results for the Quaero dataset show over 90% classification rates for the
most important experiments (see Table 5.9). Comparing the basline system (1st row)
and the best extended system (last row) two things become clear. The classification
accuracy has been slightly improved, and the classification rate was reached using only
the opponentSIFT descriptor (1x1 image region). This again proves that fusion of many,
even promising features, can degrade the overall accuracy rates. Comparing keyframe and
SIFT descriptor influence for this data the experiments show, that both keyframe usage
and SIFT feature inclusion improve the results. Again, SVM classifiers perform best with
94.7%, followed by Random Forests and Decision Trees.

Table 5.8.: Confusion matrix obtained on the Quaero 2010 evaluation dataset using the
extended system and SVMs (%). Genre confusions over 15% are boxed for visualization

purposes.

Ca Co Do Ma Mo Ne Sh Ta Tr We

Ca 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Co 0.0 99.2 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0
Do 0.0 0.0 91.7 0.0 8.3 0.0 0.0 0.0 0.0 0.0
Ma 0.0 11.1 0.0 81.5 7.4 0.0 0.0 0.0 0.0 0.0
Mo 0.0 3.5 13.8 0.0 82.7 0.0 0.0 0.0 0.0 0.0
Ne 0.0 0.0 0.0 0.0 0.0 94.7 0.0 0.0 5.3 0.0
Sh 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0

Ta 0.0 0.0 0.0 0.0 16.7 0.0 16.7 66.6 0.0 0.0
Tr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0
We 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 97.3

Looking at the confusion matrix for the best overall system in the Table 5.8, some inter-
esting points leap to the eye. Comparing the difference in keyframe extraction using the
SVM classifiers, the three lowest genre accuracies for documentaries, show games and talk
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shows improve very much classifying with the opponentSIFT feature. Table 5.10 with the
individual feature rates confirms, that all SIFT features perform very well for these genres.
Unfortunately the fusion of more features degrades the overall performance.

Table 5.9.: Average correct classification rates obtained on the Quaero dataset.
Comparison of classifiers, keyframe influence on features and SIFT descriptor inclusion.

Best overall new result at the bottom compared to the best overall baseline system result
at the top.

Classifier System Class. Rate

SVM

Baseline on all frames
94.5%

(Aural + Cognitive + Structural + Visual)

Extended on keyframes
94.0%

(Aural + Cognitive + Structural + Visual)

Extended on keyframes
94.6%

(Aural + Cognitive + Structural + Visual + SIFT)

Baseline on all frames
91.3%

(Aural + Cognitive + Structural + Visual)

Random Forest Extended on keyframes
91.0%

Choice parameter set (Aural + Cognitive + Structural + Visual)

Extended on keyframes
91.3%

(Aural + Cognitive + Structural + Visual + SIFT)

Baseline on all frames
87.3%

(Aural + Cognitive + Structural + Visual)

Decision Tree Extended on keyframes
90.7%

Choice parameter set (Aural + Cognitive + Structural + Visual)

Extended on keyframes
91.7%

(Aural + Cognitive + Structural + Visual + SIFT)

SVM
Extended on keyframes

94.7%
(opponentSIFT 1x1)

The individual feature accuracy table for the extended system with SVM classification
provides even more insight. The cartoon genre is either classified very good or missed
completely by the different features. Only aural, visual and SIFT features prove useful for
this genre. The most successful genres are again commercial, weather forecast and traffic
forecast. All features achieve over 90% accuracy in the commercial accuracy. Comparing
the three audio representations, the aural descriptor performs best. From the 2nd and 3rd
representation only the MFCC feature looks promissing for genre classification compared
to ZCR and signal energy. Also the 2nd feature representation shows better accuracy
results than the 3rd representation. These observations are backed up by the results on
the RAI dataset in Table 5.6. Again, SIFT descriptors show the highest average accuracy
rates followed by the aural and visual features, compared to the other features.
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5.3.3. YouTube Results

The results on the YouTube dataset further validate the findings of the TV domain ex-
periments of the genre classification system. Table 5.11 shows that once again the SVM
classifiers perform best with an overall classification rate of 44.0%. Interesting is the
fact, that again another combination of features made this classification accuracy possible.
Fusing all visual and all SIFT features achieved a better classification rate than including
aural, structural and cognitive information. SIFT features alone manage to classify the
dataset with an 42.6% accuracy, while all other features together excluding SIFT achieve
28.2%. Fusion of all feature modalities is slightly worse with 42.8% than the best overall
performance mentioned before. The impression is, that SIFT features prove more success-
ful the more difficult the data gets compared to all the other features. The same applies
to the different classifiers. The classifier performances disperse even more on this cha-
llenging web video dataset. Best Random Forest classification rate is 39.9% incorporating
all feature modalities and Decision Trees performance peaks at 26.9% with the same set
of features.

Table 5.11.: Average correct classification rates obtained on the YouTube dataset.
Comparison of classifiers and SIFT descriptor inclusion. Best overall new result at the

bottom.

Classifier System Class. Rate

SVM

Extended on keyframes
28.2%

(Aural + Cognitive + Structural + Visual)

Extended on keyframes
42.6%

(SIFT)

Extended on keyframes
42.8%

(Aural + Cognitive + Structural + Visual + SIFT)

Extended on keyframes
35.9%

Random Forest (Aural + Cognitive + Structural + Visual)

Choice parameter set Extended on keyframes
39.9%

(Aural + Cognitive + Structural + Visual + SIFT)

Extended on keyframes
24.0%

Decision Tree (Aural + Cognitive + Structural + Visual)

Choice parameter set Extended on keyframes
26.9%

(Aural + Cognitive + Structural + Visual + SIFT)

SVM
Extended on keyframes

44.0%
(Visual + SIFT)

A lower accuracy performance due to high diversity and more difficult categories was
expected for this domain, but the confusion matrix in Table 5.12 for the overall best
experiment shows that the low overall classification rate may also be the result of the high
number of categories and very low classification rates for some of these categories. The
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top three categories are autos, howto and entertainment with 80.0%, 72.0% and 56.0%,
respectively. Sports and travel are also over 50%. But there are also many categories
with very low classification rates. The three lowest performances being news, people and
film, and education and science with 22.0%, 24.0% and 32.0% resepectively, dropping the
average accuracy.

Comparing these results to the single feature results in Table 5.13, one can see, that sev-
eral category performances are higher using one feature for classification than the fusion
of visual and SIFT features for the overall best performance. Example categories are an-
imals, games, science, sports and most importantly news and people. The news category
classification performance is most disappointing. First of all, the accuracy drops from
40.0% to 22.0% by using the best overall system with visual and SIFT featues instead of
only MCT based frontal face detection. And second, it is one of the categories overlapping
with the TV domain where classification rates above 90% were reached for both datasets.
This example shows that the big diversity in one catgory can lead to a very huge perfor-
mance drop. More examples of the news category and all other YouTube categories can
be found in the Appendix. The small number of frames for each category easily shows,
that categories have high diversity and could belong to other categories as well than the
one assigned to them.

The performances of the single features a very low compared to the the experiments in
the TV domain. Audio, structural and some cognitive features drop below 10% average
classification accuracy. Only color moments, edge histogram and wavelet texture reach
around 20%, SIFT features are around the 40% classification rate. SIFT features perform
above average for autos (∼76%), entertainment (∼52%), howto (∼64%), sports (∼50%)
and travel (∼44%). All SIFT features perform best for autos and almost all visual features
perform best for howto videos. Audio features are very low except for single outstanding
performances in different categories. For example, signal energy using the second feature
representation achieves 0.0% classification rates for most of the categories except for en-
tertainment with 48.0%. Similar findings apply to the strcutural feature with a 36.0%
classification rate in the science category and MCT based frontal face detection in the
news category with 40.0%.
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6. Conclusion & Future Work

The focus of this study was to build a genre classification system, that automatically tags
videos with predefined labels. The system is evaluated on two different domains, the TV
broadcast domain and the web video domain. TV programs are classified into genres
and web videos are tagged with category labels. The system utilizes an extensive set
of features from different modalities and fuses information from aural, visual, structural
and cognitive content representations. These features are classified with different machine
learning algorithms, the support vector machines and decision tree classifiers.

The performance on two TV domain datasets was 98.1% and 94.7%. The classification
accuracy on one YouTube dataset from the web domain reached 44.0%. Some interesting
aspects can be seen across all experiments. The tree classifiers always performed best using
the ‘choice‘ parameter set. In very few instances the ‘example‘ parameter set achieved
around the same classification performance. Still the SVM classification outperformed the
tree classifiers on all datasets. The reason for this may be the grid search for optimal SVM
training model parameters optimizing the classification rate. Another reason may be that
SVM classification was performed binary, one vs. all, and not multi–class like with the
tree classifiers. As for the features some interesting reoccurrences lead to the following
conclusions. As for audio feature representation the single aural feature representation of
all audio features works best in the TV domain. Performance on the YouTube dataset
shows the same low accuracy as the other aural feature representations with peaks in
different categories. Cognitive feature performance rate dropped using keyframes for face
detection compared to using all video frames. Their performance could not keep up with
visual or SIFT features, but proved useful for some genres like news or weather forecast
and could be improved even further in the future. The visual features achieve around
the best classification rates on all datasets with a slight drop compared to SIFT features
on the YouTube dataset. The SIFT features perform best on all datasets and clearly
distinguish themselves from the other features the more difficult the data gets. For all
datasets they achieve highest accuracy rates for a majority of genres/categories. But, high
computational time and SVM model training because of the high dimensionality are their
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6. Conclusion & Future Work

weakness compared to the ”global”1 low–dimensional visual features.

Finally, patterns emerge for individual features for specific genres and categories and at
the same time it can be noticed that overall best performances come from the fusion
of different number of features. For some cases single features perform better than any
combination of two or more features. In other cases performance drops fusing more and
more features. This two points strongly indicate that the classification of many genres
could benefit from individual classification approaches utilizing handpicked or empirical
chosen features instead of a general approach.

6.1. Future Work

The related work chapter already showed clearly that a lot of research areas can be inves-
tigated and included in the study of multimedia genre/category tagging. Several potential
future work options are:

SIFT training model time. The limitations of the performed evaluation were already ex-
plained. Investing more time and resources, the evaluation can be done with different
keyframe options and without using subset limitations for training the classifiers.

Face detection. The results showed that improving the face detection rate enhances the
accuracy of the cognitive feature. Simultaneously switching the feature extraction
from all frames to keyframes degraded the cognitive feature results. A solution
regarding both aspects could be the utilization of a tracking based face detector on
the whole video. The possibility to achieve more robust face detection over all frames
and thus compute a more reliable cognitive feature vector could lead to promising
results.

Temporal features. Usage of keyframes brought the system further away of using temporal
features like HoG and HoF, which are used for action detection. For single shots the
temporal information could be vital to distinguish between slow and and fast paced
visual material, and measure different motions in the videos.

Mid–level semantics. The idea of using mid–level features was not investigated for this
system yet. Several possibilities are available which are not mutually exclusive like ac-
tion features, LSA and audio segmentation with categories like silence, noise, speech
and music, maybe even more detailed like motor sounds, live audience and animal
sounds. This information can be used on a shot–level basis.

ASR. The most important future work would be including an automatic speech recognition
system to perform classification on the spoken words in each video, which would
be carried out with typical documentation classification methods like presented in
the related work chapter. Especially for the web video domain information about
the topic of a video is more closely related to the category than the usual genre
characteristics.

Classification. Inspiration could be found by the two face detection methods presented in
this thesis, the Haar and MCT cascade classification. Building individual classifier
cascades for each genre eliminating videos not belonging to this genre can be a better
approach instead of the typical classification.

1One feature vector for the whole video.
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6.1. Future Work

Individual frameworks. The evaluation revealed two interesting points. For one, the fusion
of many unreliable features is not helping the overall classification results. And
second, some features are better suited for specific genres or categories. Instead of
using a generic system with the same features for all genres or categories, individual
combinations for each genre could prove to be more successful.
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A. Shot Detection File

<shotBoundaryResults>

<shotBoundaryResult sysId="Music_Domenica_in_20060409_1825.avi.sbd"

totalRunTime="0.0" totalDecodeTime="0.0" totalSegmentationTime="0.0"

processorTypeSpeed="Quad-Core AMD Opteron(tm) Processor 2354">

<seg src="Music_Domenica_in_20060409_1825.avi">

<trans type="CUT" preFNum="3524" postFNum="3525"/>

<trans type="CUT" preFNum="7008" postFNum="7009"/>

<trans type="CUT" preFNum="7064" postFNum="7065"/>

<trans type="CUT" preFNum="7217" postFNum="7218"/>

<trans type="CUT" preFNum="7275" postFNum="7276"/>

<trans type="CUT" preFNum="7388" postFNum="7389"/>

<trans type="CUT" preFNum="7426" postFNum="7427"/>

<trans type="CUT" preFNum="7528" postFNum="7529"/>

<trans type="CUT" preFNum="7750" postFNum="7751"/>

<trans type="CUT" preFNum="8352" postFNum="8353"/>

<trans type="CUT" preFNum="8405" postFNum="8406"/>

<trans type="CUT" preFNum="8630" postFNum="8631"/>

<trans type="CUT" preFNum="8743" postFNum="8744"/>

<trans type="CUT" preFNum="8775" postFNum="8776"/>

</seg>

</shotBoundaryResult>

</shotBoundaryResults>
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B. Config File

<?xml version="1.0" encoding="utf-8"?>

<config>

<!--video OR key-->

<source>key</source>

<keyframes>

<number>1</number>

<max>100</max>

<!--0 = shot ; 1 = video ; 2 = video if not max else shot-->

<type>0</type>

</keyframes>

<do>

<visual>0</visual>

<structural>0</structural>

<cognitive>0</cognitive>

<sift>0</sift>

<codebook>0</codebook>

<treeClassifier>0</treeClassifier>

</do>

<facedetection>

<mct>0</mct>

<profile>0</profile>

<detector>face_frontal_new.xml</detector>

<detector>face_45deg_new.xml</detector>

<mct_confidence>0</mct_confidence>

<haar>0</haar>

<profile>0</profile>

<cascade>haarcascade_frontalface_default.xml</cascade>

<cascade>haarcascade_profileface.xml</cascade>

<lbp>0</lbp>

<cascade>lbpcascade_frontalface.xml</cascade>

<!-- save images with face rectangles-->

<prove>0</prove>

</facedetection>

<sift>

<!--harrislaplace OR densesampling-->

<dectector>densesampling</dectector>

<!--1.2 OR 1.2+2.0 etc-->

<scale>1.2</scale>

<pixel>6</pixel>

<!--sift OR opponentsift OR rgbsift-->

<descriptor>opponentsift</descriptor>

<!--pyramid-1x1-2x2 OR pyramid-1x1-2x2-1x3 OR pyramid-1x1-->

<spatialpyramid>pyramid-1x1-2x2-1x3</spatialpyramid>

</sift>

<codebook>
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B. Config File

<size>1000</size>

<samples>250000</samples>

<iterations>3</iterations>

<!--KMEANS_RANDOM_CENTERS OR KMEANS_PP_CENTERS-->

<centerinit>KMEANS_PP_CENTERS</centerinit>

<centertrys>3</centertrys>

</codebook>

<treeClassifier>

<path>./classification/</path>

<kfold>3</kfold>

<!--0 = italy, 1 = quaero, 2 = youtube-->

<genres>2</genres>

<do_norm>1</do_norm>

<do_sift>1</do_sift>

<randomtree>1</randomtree>

<decisiontree>1</decisiontree>

<trainmodel>0</trainmodel>

<usemodel>1</usemodel>

<!--parameter set: 0 = default : 1 = choice : 2 = example-->

<choice>0</choice>

</treeClassifier>

</config>
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C. Folder Structure
/ ............................................ tvGenre executeable binary

audio........................................Matlab audio analysis
results..........................Extracted audio features
Voicebox ..................................Voicebox Toolkit

classification..............SVM and Tree classification folder
Data.........................................SVM input data

For_Genre1

For_Genre2

...

Kfold ....................................... SVM kfold data
For_Genre1

For_Genre2

...

Results.............SVM models, predicitions and results
For_Genre1

For_Genre2

...

py_tvgenre.py

py_create_SVM_input.py

py_grid.py

py_subset.py

codebook...............................SIFT binary and codebooks
images...................Codebook creation sample images

config...............................Default config file location
features.......................................Extracted features

Features_for_Video_1

...

haarcascades........................................Haar cascades
key...........................................Extracted keyframes

Keyframes_for_Video_1

...

mct..............................................MCT cascade files
shot...........................................Shot detection files
video....................................................Video files
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D. Face Detection

D. Face Detection

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure D.1.: Sample frames of the frontal face detection displaying some false positive
and false negative detections. The blue rectangles are the MCT face detection, the

red/yellow frames are from the Haar cascades.
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E. YouTube samples

(a) Activism (b) Activism2 (c) Activism3

(d) Animals (e) Animals2 (f) Animals3

(g) Autos (h) Autos2 (i) Autos3

(j) Comedy (k) Comedy2 (l) Comedy3

Figure E.2.: Sample frames from the YouTube evaluation dataset showing the diversity
in the single genres
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E. YouTube samples

(a) Education (b) Education2 (c) Education3

(d) Entertainment (e) Entertainment2 (f) Entertainment3

(g) Film (h) Film2 (i) Film3

(j) Games (k) Games2 (l) Games3

(m) Howto (n) Howto2 (o) Howto3

Figure E.3.: Sample frames from the YouTube evaluation dataset showing the diversity
in the single genres
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(a) News (b) News2 (c) News3

(d) People (e) People2 (f) People3

(g) Science (h) Science2 (i) Science3

(j) Sports (k) Sports2 (l) Sports3

(m) Travel (n) Travel2 (o) Travel3

Figure E.4.: Sample frames from the YouTube evaluation dataset showing the diversity
in the single genres
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F. Other Result Tables

Table F.1.: Confusion matrix obtained on the RAI dataset using the baseline system and
SVMs (%).

Ca Co Fo Mu Ne Ta We

Ca 100 0.0 0.0 0.0 0.0 0.0 0.0
Co 0.0 100 0.0 0.0 0.0 0.0 0.0
Fo 0.0 0.0 100 0.0 0.0 0.0 0.0
Mu 0.0 14.2 0.0 85.7 0.0 0.0 0.0
Ne 0.0 0.0 0.0 0.0 100 0.0 0.0
Ta 0.0 0.0 0.0 0.0 0.0 100 0.0
We 0.0 0.0 0.0 0.0 0.0 0.0 100

Table F.2.: Confusion matrix obtained on the Quaero 2010 evaluation dataset using the
baseline system and SVMs (%).

Ca Co Do Ma Mo Ne Sh Ta Tr We

Ca 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Co 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Do 0.0 0.0 75.0 8.3 16.6 0.0 0.0 0.0 0.0 0.0
Ma 0.0 7.4 0.0 85.2 3.7 3.7 0.0 0.0 0.0 0.0
Mo 0.0 3.3 0.0 0.0 96.7 0.0 0.0 0.0 0.0 0.0
Ne 0.0 0.0 0.0 0.0 0 100 0.0 0.0 0.0 0.0
Sh 0.0 0.0 0.0 8.7 4.3 0.0 87.0 0.0 0.0 0.0
Ta 0.0 0.0 0.0 33.3 0 0.0 50.0 16.6 0.0 0.0
Tr 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 100 0.0
We 0.0 0.0 0.0 0.0 0 2.7 0.0 0.0 0.0 97.3
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Table F.3.: Confusion matrix obtained on the RAI dataset using the extended system
and Random Forests and choice parameter set (%).

Ca Co Fo Mu Ne Ta We

Ca 92.6 3.7 0.0 0.0 3.7 0.0 0.0
Co 0.0 100 0.0 0.0 0.0 0.0 0.0
Fo 0.0 0.0 95.5 0.0 0.0 4.5 0.0
Mu 14.3 0.0 14.3 14.3 0.0 28.6 28.6
Ne 0.0 0.0 0.0 0.0 95.9 4.1 0.0
Ta 0.0 0.0 0.0 0.0 2.6 94.7 2.6
We 0.0 0.0 0.0 0.0 0.0 1.7 98.3

Table F.4.: Single feature accuracy on the RAI dataset using the extended system and
Random Forest and choice parameter set (%). Bold values display the best genre for

each feature. Values with a box display the best feature for each genre.

Ca Co Fo Mu Ne Ta We Avg

Aural 77.8 96.6 100 71.4 89.8 76.3 91.7 88.9
MFCC 2 37.0 89.7 95.5 0.0 79.6 31.6 95.0 73.2
MFCC 3 3.7 94.8 90.9 0.0 79.6 21.1 93.3 68.6
SP 2 18.5 60.3 54.5 0.0 40.8 26.3 58.3 44.8
SP 3 33.3 63.8 54.5 0.0 40.8 28.9 56.7 47.1
ZCR 2 18.5 69.0 9.1 0.0 65.3 18.4 86.7 52.9
ZCR 3 7.4 69.0 40.9 0.0 51.0 31.6 78.3 51.7

Auto Color 77.8 100 90.9 28.6 91.8 92.1 98.3 92.0

Color Mom 85.2 98.3 100 0.0 89.8 89.5 98.3 91.6

HSV Hist 70.4 100 95.5 57.1 100 94.7 98.3 94.3

CoOccurrence 70.4 100 31.8 28.6 81.6 68.4 91.7 79.3
Edge Hist 63.0 94.8 77.3 0.0 93.9 81.6 96.7 85.8

Wavelet 70.4 100 95.5 57.1 100 94.7 98.3 94.3
Struct 51.9 96.6 54.5 0.0 85.7 84.2 98.3 82.4

Haar Front 33.3 82.8 81.8 14.3 75.5 94.7 100 80.1

Haar + Profile 55.6 81.0 86.4 14.3 77.6 92.1 100 82.4

MCT Front 44.4 89.7 90.9 0.0 79.6 97.4 100 84.3
MCT + Side 48.1 89.7 90.9 0.0 77.6 94.7 96.7 83.1

SIFT 1x1 88.9 100 81.8 0.0 100 73.7 3.3 68.6

SIFT 2x2 63.0 100 81.8 0.0 100 65.8 5.0 65.1

rgbSIFT 1x1 88.9 100 86.4 0.0 100 81.6 16.7 73.2

rgbSIFT 2x2 81.5 100 81.8 0.0 100 71.1 6.7 68.2

oppSIFT 1x1 92.6 100 81.8 0.0 100 84.2 5.0 70.9

oppSIFT 2x2 74.1 100 81.8 0.0 100 81.6 1.7 67.8
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Table F.5.: Confusion matrix obtained on the RAI dataset using the extended system
and Decision Trees and choice parameter set (%).

Ca Co Fo Mu Ne Ta We

Ca 92.6 0.0 0.0 0.0 7.4 0.0 0.0
Co 0.0 100 0.0 0.0 0.0 0.0 0.0
Fo 0.0 0.0 100 0.0 0.0 0.0 0.0
Mu 0.0 0.0 14.3 28.6 28.6 0.0 28.6
Ne 0.0 0.0 0.0 0.0 98.0 2.0 0.0
Ta 0.0 0.0 0.0 0.0 2.6 97.4 0.0
We 0.0 0.0 0.0 0.0 0.0 1.7 98.3

Table F.6.: Single feature accuracy on the RAI dataset using the extended system and
Decision Tree and choice parameter set (%). Bold values display the best genre for each

feature. Values with a box display the best feature for each genre.

Ca Co Fo Mu Ne Ta We Avg

Aural 70.4 91.4 77.3 57.1 75.5 65.8 76.7 77.0
MFCC 2 25.9 44.8 54.5 0.0 30.6 34.2 43.3 37.9
MFCC 3 18.5 56.9 63.6 14.3 40.8 10.5 45.0 39.8
SP 2 40.7 27.6 54.5 0.0 20.4 26.3 31.7 29.9
SP 3 18.5 32.8 40.9 14.3 36.7 31.6 43.3 34.5
ZCR 2 48.1 31.0 9.1 0.0 40.8 18.4 73.3 39.8
ZCR 3 14.8 41.4 36.4 0.0 46.9 42.1 53.3 41.0

Auto Color 66.7 100 81.8 28.6 85.7 89.5 98.3 88.5

Color Mom 63.0 98.3 100 14.3 93.9 76.3 90.0 86.6

HSV Hist 66.7 100 81.8 28.6 95.9 76.3 96.7 88.1

CoOccurrence 66.7 100 68.2 28.6 69.4 60.5 88.3 77.8
Edge Hist 66.7 94.8 68.2 0.0 85.7 73.7 78.3 78.5
Wavelet 74.1 98.3 77.3 14.3 83.7 68.4 95.0 83.9
Struct 55.6 96.6 54.5 0.0 63.3 73.7 88.3 74.7
Haar Front 40.7 63.8 68.2 14.3 61.2 76.3 95.0 69.0
Haar + Profile 37.0 65.5 81.8 28.6 61.2 76.3 90.0 69.3
MCT Front 40.7 70.7 77.3 14.3 53.1 86.8 88.3 69.7
MCT + Side 51.9 69.0 81.8 14.3 75.5 81.6 96.7 76.2

SIFT 1x1 81.5 100 86.4 0.0 100 81.6 15.0 72.0

SIFT 2x2 74.1 100 86.4 0.0 100 78.9 5.0 68.6

rgbSIFT 1x1 92.6 100 86.4 0.0 100 76.30 25.0 74.7

rgbSIFT 2x2 74.1 100 86.4 0.0 98.0 84.2 13.3 70.9

oppSIFT 1x1 77.8 100 90.9 14.3 100 78.9 16.7 72.4

oppSIFT 2x2 74.1 100 81.8 0.0 100 84.2 16.7 71.6
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Table F.7.: Confusion matrix obtained on the Quaero 2010 evaluation dataset using the
extended system and Random Forests and choice parameter set (%).

Ca Co Do Ma Mo Ne Sh Ta Tr We

Ca 66.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Co 0.0 99.2 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.8
Do 0.0 8.3 75.0 0.0 16.7 0.0 0.0 0.0 0.0 0.0
Ma 0.0 7.4 0.0 77.8 7.4 0.0 3.7 0.0 0.0 3.7
Mo 0.0 6.7 3.3 0.0 86.7 0.0 0.0 0.0 0.0 0.0
Ne 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 5.6 0.0
Sh 0.0 4.3 0.0 4.3 4.3 0.0 87.0 0.0 0.0 0.0
Ta 0.0 0.0 0.0 33.3 16.7 0.0 50.0 0.0 0.0 0.0
Tr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.4 0.0
We 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 97.3

Table F.8.: Confusion matrix obtained on the Quaero 2010 evaluation dataset using the
extended system and Decision Trees and choice parameter set (%).

Ca Co Do Ma Mo Ne Sh Ta Tr We

Ca 66.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Co 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8
Do 0.0 0.0 83.3 0.0 16.7 0.0 0.0 0.0 0.0 0.0
Ma 0.0 14.8 0.0 70.4 3.7 0.0 7.4 0.0 0.0 3.7
Mo 0.0 3.3 3.3 0.0 90.0 0.0 0.0 0.0 0.0 0.0
Ne 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 5.6 0.0
Sh 0.0 4.3 0.0 0.0 4.3 0.0 87.0 4.3 0.0 0.0
Ta 0.0 0.0 0.0 33.3 16.7 0.0 33.3 16.7 0.0 0.0
Tr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.4 0.0
We 0.0 0.0 0.0 2.7 0.0 2.7 0.0 0.0 0.0 94.6
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G. Sample Decision Tree

G. Sample Decision Tree
Decision Tree structure of the AutoColorCorrelogram feature for Decision Tree classifier
for the RAI dataset. The split–node numbers are the features from the feature vector
responsible for the split. The number in the brackets are the number of samples arriving
at the particular node. The numbers in the boxed leafs are the class label outputs when
a sample is predicted.
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