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Abstract

The purpose of this work is to prototype an automated plant recognition system to help
botanists in the task of plant identification. Another aim was to optimise such a system for
performance and execution speed for easy portability to mobile devices, while improving
the recognition quality of state-of-the-art methods.

The system is based on feature extraction and classification methods applied on leaf images,
more specifically Angular Radial Transform (ART), Fourier Descriptors (FD) and Scale
Invariant Feature Transform-based Bag-of-Words (SIFT-BoW) as region, contour and local
leaf features respectively. The feature vectors are classified by means of Random Forest
and Nearest Neigbour classifiers. Tests were conducted on large datasets, with focus on
the Pl@ntLeaves dataset from the ImageCLEF 2011 plant identification task. Although
FD and SIFT based systems have already been evaluated for this task, in similar but not
identical methodologies, we test for the first time the performance of ART and Random
Forests on plant identification. Weighted confidence based late fusion was successfully used
to classify images based on multiple feature vectors. Optimizations have been proposed
for shape-based recognition with focus on the ART implementation, reducing the required
computational time by means of important feature selection. Importance is computed
either from the intrinsic Random Forest values or from discriminant potential of features.

Results of comparisons with state-of-the-art methods are very favorable for the proposed
system when classifying leaf images on uniform backgrounds. Recognition rates on uncon-
strained natural plant photographs, however, were average in comparison with state-of-
the-art methods and generally too low to be practical. Although ART and FD, as shape
descriptors alone, perform better than the state-of-the-art, the importance of local features
has been highlighted, as it noticeably improves system performance. Of the two classifiers
tested, Random Forests was selected as the better one, proving better generalisation, clas-
sification times and scalability than Nearest Neigbour. Execution time results indicate the
system proposed is indeed fast enough to run in reasonable times on slower devices.
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Kurzzusammenfassung

Durch die rapiden Vortschritte bei mobiler Rechenleistung können Aufgaben der Entschei-
dungsfindung, die bis jetzt von Menschen übernommen werden mussten, nun mit Hilfe
des Computers gelöst werden. Zu diesen Aufgaben gehört auch die Identifikation von
Pflanzen. Bisher mussten Botaniker Pflanzen manuell anhand bestimmter Merkmale klas-
sifizieren. Die Blattformen gehören dabei zu den wichtigsten Unterscheidungsmerkmalen,
die eine Pflanzenart definieren. Diese Arbeit stellt ein effizientes System vor, das Pflanzen
in Bildern ihrer Blätter effizient erkennen kann. Das System umfasst sowohl Methoden
zur Identifikation von Blättern in Bildern, die vor einem gleichmäßigen Hintergrund fo-
tografiert wurden, als auch in solchen, die in natürlicher Umgebung aufgenommen wur-
den. Bei der Identifikation werden Methoden aus den Bereichen des maschinellen Sehens
und der Bildverarbeitung zur Gewinnung von Form und lokalen Deskriptoren, die von
überwachten Klassifikatoren aus dem Bereich des maschinellen Lernens klassifiziert wer-
den, eingesetzt. Mittels Bildsegmentierung in Bildern mit gleichmäßigem Hintergrund
erhält man die Form der Blätter. Merkmale dieser Form werden durch die Angular Ra-
dial Transform (ART) und Fourier Deskriptoren (FD) gewonnen. Parallel dazu, werden
beide Bildarten - vor gleichmäßigem Hintergrund und in natürlicher Umgebung - mit der
Scale Invariant Feature Transform (SIFT) verarbeitet und in einer Bag-of-Words (BoW)
Repräsentation kodiert. Die erhaltenen Merkmalsvektoren dieser Klassifizierung werden
durch Late Fusion fusoniert, um die abschließende Ausgabe des Systems zu generieren
und die Leistung von Random Forests und Nearest Neighbours zu vergleichen. Strategien
zur Effizienzsteigerung basieren auf einer Dimensionsreduktion des Merkmalsraums durch
Auswahl der geeignetsten Merkmale.

Ausführliche Experimente wurden auf drei Datensätzen, deren wichtigster Pl@ntLeaves
aus dem ImageCLEF 2011 Plant Identification Task ist, ausgeführt. Im Vergleich zu
state-of-the-art Anwendungen erreicht das hier vorgestellte System sehr gute Ergebnisse
bei der Erkennungsleistung - also Genauigkeit und Geschwindigkeit. Die Ergebnisse zeigen
die Wichtigkeit von lokalen Merkmalen als vervollständigende Deskriptoren zu den Form-
merkmalen - sogar in Bildern mit gleichmäßigem Hintergrund. Die Arbeit wird mit
einer Analyse der Effizienz und der Skalierbarkeit des Systems, sowohl auf langsameren
Endgeräten als auch mit größeren Datensätzen, abgeschlossen.
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List of abbreviations

1NN Nearest Neighbour Classifier
ART Angular Radial Transform
BoW Bag of Words
CART Classification and Regression Tree
CEDD Color and Edge Directivity Descriptor
CDA Canonical Discriminant Analysis
CCH Circular Covariance Histograms
DFT Discrete Fourier Transform
DEG Maximum/Average Degree Descriptor
DoG Difference of Gaussians
DT Decision Tree
EM Expectation Maximisation
EOH Edge Orientation Histograms
FD Fourier Descriptor
FDA Functional Data Analysis
FFT Fast Fourier Transform
HOG Histogram of Oriented Gradients
HSL Hue Saturation Lightness
IDSC Inner-Distance Shape Context
KNN K-Nearest Neighbours Classifier
LDA Linear Discriminant Analysis
LSH Locality Sensitive Hashing
MSER Maximally stable extremal regions
RF Random Forests Classifier
RGB Red Green Blue
RIT Rotation Invariant Points
RMMH Random Maximum Margin Hashing
SIFT Scale Invariant Feature Transform
SVM Support Vector Machine
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1. Introduction

Under circumstances of fast species extinction mainly due to human development, botanists
face the daunting task of researching as many species of plants as possible before they go
extinct. Such research is mainly characterized by recording species distribution and, more
importantly, the evolution of this distribution over time. During this process, botanists
are faced with one main recurrent task: identifying plant species on the field and record-
ing relevant information such as local growth density and mutations. Such activities are
nowadays done manually, with little to no help from computers or automated methods.
Increasing the species identification speed would thus greatly benefit botanical surveys,
allowing for more efficient and often sampling of vegetation. However, the benefits are not
only limited to the recording of endangered species: the increasing rate and affordability of
global transportation has led to the introduction of foreign plant species which can harm
the local environmental balance. Keeping track of these species is very important for the
future of local agriculture and following their evolution is vital for a healthy ecosystem.

Until recently, there was a lack of digital applications to help accomplish the aforemen-
tioned surveys, but the boom of mobile computing (laptops, smartphones, tablets, etc) has
opened new possibilities in computer aided tools. Plant identification, for instance, has
always been a particularly time consuming task, as very subtle features may differentiate
members within the same families. Although plants have many features that aid in iden-
tifying the species, such as dimension, branch shape and area of development, one of the
most defining features is their leaf. While identifying leaves, even experienced botanists
often rely on dichotomous feature trees in order to correctly determine the plant species,
a process which can be long and painstaking. Leaf features present in such trees vary
in shape, color, and vein patterns but shape and edge characteristics are omnipresent.
The importance of leaf shape as a defining species feature has been acknowledged by the
scientific community and has been the focus of many publications describing automated
recognition methods:[BCJ+08, WBX+07, YAT11, CTM+11] and others.

Our purpose is to offer an automated plant recognition system to aid botanists in quickly
identifying plant species on the field. We propose a system in which the person working on
the field would simply take a photo of a leaf and automatically receive a short list of the
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1. Introduction

most probable plant species, together with standard images of their leaves for confirmation.
This list would be ordered by relevance and would contain about 10 species, all displayed at
once, with the possibility of extending it further. The botanist would then visually decide
the correct species. This would require considerably less effort than navigating through a
feature tree, as humans are able to process visual information much faster than text. To
achieve this, we shall focus on leaf shape information, both general shape and edge details.
We thus reduce the problem of plant species identification to that of automated shape
extraction, recognition and classification. We also test common local feature extraction
methods and analyse their potential for complementing shape information.

Rendering the identification process automatic is a challenging task on many levels, as
both variances in leaf shapes - such as color and age - and those in photographs - such
as lighting, rotation and background - need to be taken into account to provide a robust
classification.

1.1 Motivation

Motivation for the current thesis comes from two main directions.

Firstly, a collaboration with the Botanical Institute from KIT, that should make the first
steps towards simplifying local plant data acquisition. In parallel with the prototyping
of an automated species recognition system, work has been done in collecting about 2000
high quality images from 150 species from South-Western Germany.

Secondly, challenges to the computer vision community have been presented in both
[BCJ+08] and the ImageCLEF 2011 plant identification task [GBJ+11], to find the best
algorithm suited for plant species identification. The algorithms proposed in both publi-
cations represent the current state-of-the art, the system from [BCJ+08] having evolved
since 2008 into a smartphone application that provides plant identification services to the
general public. Throughout this thesis we will judge the suitability of such algorithms not
only by their capacity of delivering quality results but also by their execution time and
ability to run on slow devices. As it is often the case, there is a trade-off between the two.

2



1.2. Goals

1.2 Goals

Our main goal is to define an automated plant recognition system, focusing on real-world
usability. We aim to find a balance point between precision and speed, preferably increasing
both in comparison with the state-of-the-art.

Botanical field work is often done in remote places in which phones barely have GSM signal
and an Internet connection is unavailable. Due to algorithm processing requirements, plant
identification methods, such as the Leafsnap application from [BCJ+08], require a constant
Internet connection in order to offload the processing from the portable device to a powerful
server. This has its inconveniences on which we wish to improve.

Our main focus will be on the following:

• Performance - we wish to improve on the results of current state-of-the-art methods

• Portability - the system should be easily portable, with good down-scalability
computational-wise, without loss of performance so that it can provide good results
on modern portable devices.

• Robustness - small variations in leaf shape, photographing style and background
should not affect the outcome of the system.

• OS independence and Speed - the system will be written as much as possible
from scratch in C++ in order to achieve best performance for the given task. Library
dependencies will be greatly limited so that the current system would be easily
integrated in a multitude of operating systems such as Linux, MS. Windows, iOS or
Android.

1.3 Thesis overview

In the Related Work 2 section we will present the current proposed methods for plant recog-
nition. We present in detail five of the state-of-the-art methods, which achieve very good
results with different approaches. Particular attention will be given to the ImageCLEF
plant recognition task from 2011, as it represents a recent and solid basis for comparing
different methods on a level playing field.

The theoretical and mathematical underlying principles of the current work will be de-
scribed in Theoretical Principles 3, together with other important notions necessary to
support the correctness of this work.

The Methodology 4 section will connect the mathematical principles into the current sys-
tem’s process and detail the system architecture, its implementation and optimizations.
The parameters and reasoning behind implementation choices of the theoretical principles
are described in sufficient detail to allow the reproduction of this work’s efficient imple-
mentation.

Finally, the Evaluation 5 section will introduce the datasets used for testing and detail the
performance of the proposed system, analysing results on ImageCLEF data, comparing
with state-of-the-art and related works, while describing how general system configuration
affects performance. We also analyse optimisation methods for fast execution times of the
system.
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2. Related Work

This chapter is dedicated to the review of state-of-the-art methods and presentation of
their results. We will focus our attention on one of the most ambitious plant recognition
systems, developed in 2008 at the University of Columbia, and the more recent 2011 Image-
CLEF plant identification task, which tested 8 different systems under the same conditions.
We thus aim to provide a solid overview of the recent related work and simultaneously
introduce the context of our work.

2.1 Leafsnap - Searching the World’s Herbaria

In 2008, a joint effort between the University of Columbia and the Smithsonian Botanical
Institute produced a plant recognition system described in [BCJ+08]. Upon publication
of the system, a challenge was also sent to the computer vision community to improve the
methods presented. The research finally took shape in the public LeafSnap smartphone
application, which offers plant identification services over the Internet.

The solution presented is a two-device system in which a slow, portable device used in the
field takes a photo of the plant leaf to be classified and sends that image over the Internet
to a powerful server, which does the computations. The results of the classification are
then forwarded back to the device, which displays species information. An assumption is
introduced: a user would not only be interested in the first result of this classification; it
is useful to display a list of results, ordered by the match probability between the sample
image and multiple classes. In [BCJ+08], the precision metric that is most often cited is
not the probability of obtaining the correct class in the first result, but the probability that
the correct class is displayed in the first 10 results, meaning rank 10 correct classification.
This is important from a usability point of view because a human can quickly refine results
visually and choose the correct class.

From a theoretical point of view, the plant recognition is shape based, meaning that leaf
photographs are reduced to binary images composed of foreground - leaf - and background.
On the resulting foreground shape, inner-distance shape context descriptors are computed,
described in [LJ08]. Because these descriptors are computed on specific points on the leaf
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contour, the classifier needs to match them individually in order to determine similarity
between shapes. In the following we present the system in more detail.

2.1.1 Segmentation

As previously mentioned, the algorithm is shape based and therefore needs a contiguously
segmented image. To achieve this, the leaf image is transformed from RGB color space
to HSL, from which only the saturation channel is used. This transformation is based
on the assumption that the background will generally have less color than the leaf. It
is mostly robust to shadows and general lighting changes but may be influenced by false
white balance at image acquisition. The resulting image is then thresholded by means of a
parametric Expectation-Maximisation - EM - algorithm as follows: two pixel distributions
are assumed to exist, one for the background, one for the foreground. These distributions
are assumed quasi-Gaussian, the background being close to black levels and the foreground
being close to white levels. The EM algorithm iteratively searches for the gray levels which
best fit these two distributions, updating the distributions with new values, then repeats.
Once converged, a threshold is set at the intersection of these distributions, signifying the
best background/foreground separation. Once the threshold is found, each pixel in the
image that is smaller than the threshold will be considered background and each pixel
greater than the threshold will be considered foreground.

2.1.2 Inner Distance Shape Context

Shape Context descriptors have been first introduced in [BMP02] and represent log-polar
histograms of contour distribution as shown in 2.1.

Figure 2.1: Shape Context Descriptor Overview as presented in [BMP02]

A contour is resampled to a fixed number of points. In each of these points, a histogram is
computed such that each bin counts the number of sampled contour points that fall into
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2.1. Leafsnap - Searching the World’s Herbaria

its space. Because the space distribution of each histogram bin is logarithmic on the radial
axis, the descriptor has higher descriptive power in relation to contour points closer to it,
effectively being a local shape descriptor. Figure 2.1 presents an overview of the Shape
Context descriptor: Two shapes, in this case two A shapes have their contour sampled
into points (a), (b). An overlay of the log-polar histogram space is drawn in (c). The
histograms shown in (d), (e) and (f) match the circle, square, and, respectively, triangle
shaped contour points, to prove that descriptors computed in similar points on similar
shapes will provide close histograms.

The Inner Distance Shape Descriptor [LJ08] is based on essentially the same principle as the
Shape Descriptor, but instead of using Euclidean distance and simple polar transformation
as bin coordinate spaces, it uses the inner distance and the inner angle as the coordinate
space. Both the inner distance and angle are visually exemplified in Figure 2.2.

Figure 2.2: Inner Distance and Angle as described in [LJ08]

The inner distance between two points, p and q in the image, is the minimum path between
the points inside of the shape. The inner angle θ, is the angle this path creates with the
contour tangent at the descriptor point. As the IDSC descriptor is a histogram, distance
between two descriptors has been defined through the χ2 statistic. In order to classify two
shapes using such descriptors and define their similarity, one would normally have to match
all possible pairs of descriptors on the contour, resulting in O(n3) complexity, where n is
the number of points on the contour. Through dynamic programming, the complexity has
been reduced to O(n2). The classification process is therefore computationally intensive
and does not scale well with large datasets.

2.1.3 Results

The IDSC descriptor has been tested in both [LJ08] and [BCJ+08] with the results we
further describe. In [LJ08] the main focus was on general and articulated shape recogni-
tion, whilst in [BCJ+08] the application was focused only on plant recognition. From the
presented results we retain only three, on databases that are still available today and can
be considered a comparison basis.

These datasets, which are also presented in detail in Section 5.1, are:

1. MPEG7 CE-1: 70 general object classes with 20 binary images each, 1400 images in
total

2. Swedish leaves dataset from Linkoping University and the Swedish Museum of Nat-
ural History: 15 leaf classes with 75 images each,

3. Plummers Island dataset 2008: 157 leaf classes with an average of 30 images per
class, 5013 images in total

7



2. Related Work

The following results express the correct classification accuracy, meaning the number of
correct results over the number of tested images.

Dataset Precision Evaluation metric Evaluation method

MPEG7 CE-1 84.5% Bullseye leave-one-out cross-validation

Swedish Leaves 94.5% Bullseye leave-one-out cross-validation

Plummers Island 90% Bullseye, rank 10 leave-one-out cross-validation

Table 2.1: Summary of IDSC results

A more detailed view of the Plummers Island dataset results is offered in [BCJ+08] under
the form of the following precision graphic:

Figure 2.3: Bullseye precision of IDSC on Plummers Island dataset as described in
[BCJ+08]

The result of a leave-one-out cross-validation evaluation represents the probability of ob-
taining a correct result in the first k matches. It means that although there is only a 60%
chance of the first match being correct, there is a 90% chance of displaying a correct match
in the first 10.

8



2.2. ImageCLEF

2.2 ImageCLEF

The ImageCLEF Plant Identification Task is part of the larger ImageCLEF task which
aims to provide a context for image retrieval research exchange. ImageCLEF is itself part
of the bigger Cross-Language Evaluation Forum, which focuses on multilingual and multi-
modal information access evaluation. Other topics such as Medical Image Classification
and Retrieval as well as Robot Vision have their own task in ImageCLEF.

The 2011 ImageCLEF Plant Identification task was approached with great interest, as it
presents a solid benchmark basis for our system by means of a large and varied dataset,
as well as results from a total of 8 participating groups. The entire training and testing
datasets were made available on the ImageCLEF website (also found in [GBJ+11]), thus
allowing us to test our performance against very recent similar systems.

The Pl@ntLeaves dataset is split into approximately 4000 training and 1400 testing images,
each set further divided into three categories: scans, pseudo-scans and photographs, as
shown in Figure 2.4. Details of the dataset and its structure can be found in Section 5.1.4.

Figure 2.4: Sample of the three different image types for the species Quercus Ilex

The following table presents an overview of the methods used by the participants, as
presented in [GBJ+11] and the corresponding publications:

Group Best Score Shape features Local features Classification

IFSC/USP[CFB11] 49.6% Max/Avg degree - CDA + Naive Bayes

INRIA[GJY+11] 44.9% - Hough, EOH, 2D Fourier SVM → RMMH

LIRIS[CTM+11] 43.7% Active Polygons - NN

Sabanci-Okan[YAT11] 40.4% FD Texture, Color Moments SVM

Kmimmis 18.4% - SIFT K-NN

UAIC* 15.6% - CEDD+SIFT SVM

RMIT 5.6% - GIFT NN / DT

Daedalus 4.1% - SIFT NN

*UAIC was the only group trying to make use of image metadata such as GPS coordinates and plant taxon.

Table 2.2: Overview of plant recognition methods from ImageCLEF 2011
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2. Related Work

The Best Score mentioned above is an average over normalised scores in each image cat-
egory: scan, pseudoscan and photos. The normalisation procedure used is detailed in
[GBJ+11], as well as in this work, in Section 5.1.4. It is important to mention that
IFSC/USP use manual intervention in the segmentation algorithm, hence allowing them
to apply shape features on natural photographs, all other methods being fully automatic.
Each group was allowed more than one run, the Table 2.2 describing only the results and
configurations of the best runs from each group.

The following table presents the results of all the runs from the 8 groups, together with
separate scores for each of the three image categories, in descending order of mean score:

Run id Participant Scans Pseudoscans Photographs Mean
IFSC USP run2 IFSC 0,562 0,402 0,523 0,496
inria imedia plantnet run1 INRIA 0,685 0,464 0,197 0,449
IFSC USP run1 IFSC 0,411 0,430 0,503 0,448
LIRIS run3 LIRIS 0,546 0,513 0,251 0,437
LIRIS run1 LIRIS 0,539 0,543 0,208 0,430
Sabanci-okan-run1 SABANCI-OKAN 0,682 0,476 0,053 0,404
LIRIS run2 LIRIS 0,530 0,508 0,169 0,403
LIRIS run4 LIRIS 0,537 0,538 0,121 0,399
inria imedia plantnet run2 INRIA 0,477 0,554 0,090 0,374
IFSC USP run3 IFSC 0,356 0,187 0,116 0,220
kmimmis run4 KMIMMIS 0,384 0,066 0,101 0,184
kmimmis run1 KMIMMIS 0,384 0,066 0,040 0,163
UAIC2011 Run01 UAIC 0,199 0,059 0,209 0,156
kmimmis run3 KMIMMIS 0,284 0,011 0,060 0,118
UAIC2011 Run03 UAIC 0,0927 0,163 0,046 0,100
kmimmis run2 KMIMMIS 0,098 0,028 0,102 0,076
RMIT run1 RMIT 0,071 0,000 0,098 0,056
RMIT run2 RMIT 0,061 0,032 0,043 0,045
daedalus run1 DAEDALUS 0,043 0,025 0,055 70,041
UAIC2011 Run02 UAIC 0,000 0,000 0,042 0,014

Table 2.3: ImageCLEF 2011 normalized classification scores for each run and each image
type. Best three scores in each category are highlighted

In the following we will take a closer look at the plant identification framework used by
the first four groups.
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2.2. ImageCLEF

2.2.1 IFSC/USP - Degree measures on small-world complex networks

The plant recognition procedure described by IFSC in [CFB11] relies on the novel idea
of representing the leaf contour as a complex network, meaning a graph with non-trivial
topological layout. As pre-processing, both scans and pseudoscans are segmented with the
default Otsu method [Ots79], natural photographs of the plant being manually segmented.
On the segmented images, contour detection is used and leaf contours are extracted.

Figure 2.5: Overview of the IFSC/USP method as presented in [CFB11]

The contour is then represented as a graph: each point of the contour being a node and
the Euclidean distance between two points representing the respective edge cost. This
representation results in a distance matrix between nodes. The network is then iteratively
thresholded with tj for various distance values and the maximum degree and average
degree of the graph nodes si for each respective threshold will be concatenated into a
feature vector. tj typically ranges between 0.25% and 92.5% of the maximum distance
between any two nodes. The computed feature vector is composed of pairs of maximum
and average degrees for each ti thus having a dimension equal to twice the number of
thresholds. Exact details of the descriptor are given in Section 3.2.3 as the feature has
also been implemented and tested in this work. In one of the runs sent to ImageCLEF,
Fourier Descriptors were used as a comparison with the Complex Network features.
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In the second and best run, the feature vector has been transformed prior to classification
by means of Functional Data Analysis - FDA. In FDA, the feature vector is considered
to be a discrete representation of a continuous function. The purpose is to transform the
feature vector from the feature space into a function space through means of interpolation.
More specifically, the feature vector is interpolated using B-splines bases, the resulting basis
coefficients constituting the new feature vector on which classification will be performed.

Lastly, classification is achieved by a Naive Bayesian classifier on canonical variables re-
sulting from Canonical Discriminant Analysis - CDA. CDA, a specialization of Linear
Discriminant Analysis, searches for canonical functions that maximise the ratio between
inter-class and intra-class feature variability. CDA will create a new canonical space of
dimensions equaling the number of classes minus one. Although the ImageCLEF dataset
contains 71 classes, it has been noticed that only 10 of the 70 canonical variables account
for 99.99% of feature variance. These 10 main components were used as features for the
parametric Gaussian Naive Bayes classifier.
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2.2. ImageCLEF

2.2.2 INRIA - Directional Fragment Histogram and Random Maximum
Margin Hash

The INRIA group had two runs in ImageCLEF 2011, the first run based on local features
and the second based on shape features, both using the same classification method. The
best score was obtained by the first run, being 12 percentage points higher than the shape
feature based method. Although both methods are described in [GJY+11], we will focus
on describing the first one based on its performance and the rarity of high performance
local feature based plant recognition methods in the literature.

The large scale local feature method consists of the following steps:

• Computation of color Harris keypoints

• Local feature extraction in a small vicinity around keypoints: histograms of the 2D
Fourier transform, Hough transform and Edge Orientation respectively

• Local feature matching through Random Maximum Margin Hashing

• Spatial consistent matches filtering with a Random Sample Consensus algorithm
based on a rigid transform model

• Classification through top-K rule

The local features are designed to complement each other: the Hough transform is expected
to offer shape information, the Fourier transform would offer texture information and the
Edge Orientation Histogram represents edge information such as leaf edge characteristics.
The Harris keypoints are limited to 500 per image and the concatenation of features results
in a 280 dimensional feature vector for each of these keypoints.

Random Maximum Margin Hashing - RMMH - is a recent data dependent hashing method
described in [JB11]. Similar in a way to the more renowned Locality Sensitive Hashing
- LSH, it is based on projecting feature vectors onto randomised vectors and binning
them. If features fall often in the same bins, it is assumed they are close together in the
feature space, therefore matching each other. The most important concept is that a high
dimensional feature space is reduced to a much lower dimensional one, whose dimensions
are represented by the number of random hash vectors. However, in contrast to LSH which
randomly chooses the projection vector, the RMMH selects each projection vector based on
the training dataset. Each vector is obtained by randomly partitioning the features in two
classes, irrespective of their labels and then training an SVM on this binary partitioning.
The resulting vector which splits these two random partitions with maximum margin is
one of the RMMH vectors.

Using RMMH on local features gives a similarity measure between keypoints but not neces-
sarily shapes, hence further filtering of the RMMH output with a rigid model is applied. A
geometric model accounting for size, translation and rotation of the shape is used for filter-
ing; the parameters are computed by means of the Random Sample Consensus algorithm,
randomly selecting two matched keypoints and checking if their distances correspond to
the model and updating the model accordingly.

Finally a query feature vector is labeled by voting on the top 10 returned training images
ranked by geometrical consistency score.
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2.2.3 LIRIS - Active Polygon models

The LIRIS group presented a model based leaf matching method with firm roots in botan-
ical knowledge about leaf shape variations. [CTM+11] presents an identification system
which actively tries to match standard shape polygons on images.

Figure 2.6: Main leaf shapes and their corresponding hand-tuned models as presented in
[CTM+11]

All the above shapes are described by a single polygon model determined by the following
parameters:

• αB, opening angle at the base of the leaf

• αT , opening angle at the tip

• ω, the relative maximal width

• p, the relative position where this width is reached

The approach for leaf matching is very similar to that of active contours, but in this case
the number of points is fixed and the possible transformations are limited by the main
leaf shape, as shown in Figure 2.6. As with active contours, the polygon points climb the
gradient slopes from the image, in search of stable equilibrium between model and gradient
energies. Due to the existence of leaves with multiple lobes, the model simultaneously
converges multiple polygons and then removes those with too much overlapping. The
number of lobes is then reduced to 3, as experiments show this is sufficient.

Preprocessing of the images is applied under the assumption that leaves are generally
centered and mostly vertical. A distance map is then computed in L*a*b* color space
in which each map pixel at a given position represents the color distance between central
pixels and the image pixel at that position. The distance measure is a sum of normalised
differences for each channel.
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2.2. ImageCLEF

Figure 2.7: Two sample images, their respective distance maps and converged polygon
models as presented in [CTM+11]

The Active Polygon Model is then applied on the difference map, convergence of the model
(as shown above) resulting in knowledge about the general shape, size and position of the
leaf in the image. From this polygon a new active contour is formed that quickly converges
on the leaf edge gradient, offering a detailed leaf contour and information which can also
be used to segment the image.

The final features that are extracted are the 4x3 polygon model parameters previously
described, together with curvature variance and mean sampled at 4 different osculating
circle dimensions. The mixed descriptor is very compact, being composed of only 20
features in total: 12 for general shape description and 8 for contour.

Classification is done using a nearest neighbour method on a weighted distance metric:
each attribute of the feature vector is scaled separately for optimal performance.

The main advantage of this method is the extremely low dimensionality of the feature
vector as well as the possibility of automatically segmenting natural plant photographs
due to the strong apriori of the model.
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2.2.4 SABANCI OKAN - Mathematical morphology features

The system presented by the SABANCI OKAN group in [YAT11] was of particular interest
due to its high precision on scan type images. Similar to the INRIA method, this system
has a score of over 68% on scans, which is 12 percentage points higher than any other
system proposed in ImageCLEF 2011. However, the very low score of 0.5% on photograph
types negatively affects their average score, placing them in fourth place.

The proposed system uses a total of 8 descriptors split into two main categories:

• Texture descriptors: Circular Covariance Histograms - CCH and Rotation Invariant
Points - RIT

• Color moments: statistical moments generalised to a three channel image

• Shape descriptors: Fourier Descriptors, Width length/volume factor, Convexity mea-
sures, Basic Shape Statistics and Border Covariance

The exact details of the theoretical principles of all the above descriptors can be found in
[YAT11, FHST05, AL09].

Descriptors were then fused into two separate feature vectors to train SVM classifiers:

• Shape feature vector: Composed of all the shape descriptors, including Fourier, but
none of the others

• General feature vector: Composed of all the descriptors except Fourier

Kernelised SVMs with Radial Basis Functions were used as classifiers for each feature
vector resulting in one class distance vector per feature vectors. The class distance vectors
are then fed into another SVM with the purpose of finding the best late fusion parameters.
The resulting 5 best classes from this classification are then reweighted by classification
through a multi-class SVM. The cross validation results at each step of the classification
process are described in the following table:

Stage Accuracy (%)
Classifier using only shape features 71.46
Classifier using all features except FD 89.69
Classifier combination (late fusion) 90.10
After resolving ambiguities (re-classification) 93.64

Table 2.4: Cross-validation accuracies on scans and pseudoscans at different classification
steps as described in [YAT11]

The cross-validation results indicate the importance of having both shape as well as texture
and color descriptor information. The 18 percentage points jump in precision when using
such information complementary to shape features is in itself more important than the
5 percentage points improvement through late fusion and re-classification. We note that
classification processing time is likely high, as for each sample to be classified, an SVM is
trained to avoid ambiguities.
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The system we describe in this work, as well as related works, is part of the general frame-
work of visual pattern recognition problems and as such, follows the following procedure:

Figure 3.1: Process Overview

Objects with classes from the real world - plants and their species - are considered to be
somehow similar inside a given class. They are recorded through a pattern - photograph
- producing a non-ideal representation in pattern space. This representation is too high
dimensional and variant to a multitude of factors thus requiring that lower dimensional
features are extracted to better represent the object. The main assumption is that if
objects are similar in the real world, relevant features will be close to one-another in
feature space.

Once the features are extracted, a classifier has the task of attributing a class label to the
object based on its features. This class will represent in our case the plant species from
which the image and the respective features originated.

This framework has the advantage of reducing the dimensionality of the classification
problem as well as providing invariance to image-related factors such as translation, resizing
and lighting conditions if the respective invariant features are extracted.
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3. Theoretical Principles

Specializing the aforementioned framework to our problem, the following steps of the
proposed process will be explained:

1. Segmentation

2. Shape based feature extraction

3. Local feature extraction

4. Classification

We assign a sub-section for each of these elements in which we describe the theoretical
basis of the specific methods being used.

3.1 Segmentation

In order to use certain features, more specifically shape based descriptors, it is necessary
to extract the leaf shape from the image. We are hence looking for a function which
takes a three channel color image as input and outputs a binary image in which each
pixel belonging to the leaf would have the maximum value and each pixel belonging to the
background will have the minimum value, as shown in the following example:

Figure 3.2: Segmentation example

In this work we will be looking at different ways of obtaining the segmentation functions
based on thresholding, that is for a color pixel p(x, y) belonging to color image I, defined
by each channel value p1(x, y), p2(x, y) and p3(x, y) respectively, the segmentation function
defining the segmented image S is as follows:

Seg : I → S

Seg(x, y) =

{
1, if a · p1(x, y) + b · p2(x, y) + c · p3(x, y) > threshold

0, else
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3.1. Segmentation

Where the (x, y) are pixel coordinates varying from (1, 1) to the image dimensions (nW,nH)
and the three linear coefficients a,b and c represent weights for each respective image chan-
nel. We are then faced with the problem of finding discriminative color channels and the
threshold value in order to define a good segmentation function.

The first assumption we make in order to find such a function is that the background of
the leaf image is generally uniform and contains little color information. This assumption
holds if we look at leaf image datasets such as those from ImageClef 2011, Plummers Island
and the Swedish Leaf dataset presented in Section 5.1. Qualitatively analysing different
color channels from color spaces such as RGB, L*a*b, HSL on these datasets, we have
reached the conclusion that the Blue channel from RGB and the Saturation channel from
HSL offer strong discriminative potential, as shown below:

Figure 3.3: Leaf image together with discriminative color channels

The reason we did not only consider the saturation channel as it is done in [BCJ+08,
CFB11] is that very often, complex leaves are held together by branches with low saturation
levels resulting in non connected leaf areas. The Blue channel helps in this regard although
it also introduces the risk of falsely segmenting leaf shadows. Considering the above, we
specialise the segmentation function to

Seg : I → S

Seg(x, y) =

{
1, if a · (1−Blue(x, y)) + b · Sat(x, y) > threshold

0, else

Where both channels Blue and Sat are considered to have pixel values between 0 and 1.
The linear combination of these channels has shown to offer good contrast in practice for
(a, b) coefficient values between (0.5, 0.5) and (0.2, 0.8) depending on the balance we wish
to achieve between sensitivity to shadows and correct segmentation of complex leaves with
branches.

In order to achieve good segmentation performance, the threshold variable has to be
meaningfully defined for each image. In this work we propose two efficient algorithms
for threshold determination, both making the assumption that the composite gray level
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channel defined by K(x, y) = a · (1 − Blue(x, y)) + b · Sat(x, y) is discriminative enough
to separate the leaf and background into two, non overlapping gray level distributions.
Considering K to be discretely represented on nG gray levels, both algorithms work on
the histogram of K, defined as follows:

h(i) =

(nW,nH)∑
(x,y)=(1,1)

1K(x,y)=i with 1K(x,y)=i =

{
1, if K(x, y) = i

0, else

Where i is a discrete gray level variable ranging from 0 - black to nG - white. In the case
of most images, it is an 8 bit representation with values between 0 and 255. Based on the
histogram, a small percentage of both the lowest and highest gray levels is clipped in order
to improve general contrast and foreground/background gray level distance. The image is
then transformed as described in the following algorithm:

Algorithm 1 Black / White clipping

1: nTotalP ixels← imageWidth · imageHeight
2: nBlackP ixels← nTotalP ixels · blackClipProcentage
3: nWhiteP ixele← nTotalP ixels · whiteClipProcentage
4: pixelCount← 0, grayLevel← 0
5: while pixelCount < nBlackP ixels do
6: pixelCount← pixelCount+ h(grayLevel)
7: grayLevel← grayLevel + 1
8: end while
9: newBlackLevel← grayLevel, pixelCount← 0, grayLevel← nG

10: while pixelCount < nWhiteP ixels do
11: pixelCount← pixelCount+ h(grayLevel)
12: grayLevel← grayLevel − 1
13: end while
14: newWhiteLevel← grayLevel;
15: for all image pixels p ∈ K do
16: if p > newWhiteLevel then
17: p← nG
18: else
19: if p < newBlackLevel then
20: p← 0
21: else
22: p← (p− newBlackLevel)/(newWhiteLevel − newBlackLevel)
23: end if
24: end if
25: end for

With default White and Black clipping percentages being 5% and 10% respectively. The
effect of the algorithm is shown on a sample histogram in Figure 3.4.
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Figure 3.4: Effects of black/white clipping on the histogram of the K channel of a leaf
image. Orange shows the histogram before clipping, while blue shows it after.

The main effect of the aforementioned transformation is that general image contrast is
higher, providing better separation between foreground and background pixels. The dark-
est 10% pixels now become black, while the lightest 5% pixels become white. Values be-
tween the newly identified black and white graylevels are then linearly stretched between
0 and nG.

Figure 3.5: An example of the effects of clipping on the K channel of a leaf image.

Figure 3.5 shows the result of our clipping algorithm on the extracted K channel of a leaf
image. We notice how the light-gray leaf against a dark-gray background is transformed
into a nearly perfect white leaf against a black background, thus increasing the contrast
and providing a better image for thresholding segmentation.
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3.1.1 Derivative based histogram thresholding

Derivative based histogram thresholding makes the assumption that the image is already
clipped as described before and starting from the lowest gray level, searches for the point
where the variation of h(i) is negative and close to null, meaning the first minimum found
after descending a slope. This minimum generally matches values just above the highest
gray level of background pixels.

As derivative methods are very prone to noise and the clipping transformation also tends
to produce jagged histograms, h(i) is firstly smoothed by means of a sliding window. It
is on this smooth histogram that the derivative method is applied, resulting in a stable
threshold.

Figure 3.6: Threshold as defined by derivative method

Although this method is both fast and stable, it deteriorates rapidly when there is strong
overlapping between foreground and background pixel distributions. All segmentation
methods are sensitive to such imperfections but the presented derivative method may es-
pecially converge at bad gray levels, such as perfect white, when there is no distinguishable
minimum. However, a solution to this problem would be to limit the minimum search to
a default value, as a last resort if convergence is not reached.
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3.1.2 Clustering based histogram thresholding

Another way of finding a significant threshold is by applying a clustering algorithm on the
histogram values. In [BCJ+08, BCGM98] a parametric Expectation Maximisation algo-
rithm was used to define two clusters: one for the background and one for the foreground.
The threshold is then defined as the mid-distance between the central points of those clus-
ters. In a similar fashion we apply a 1 dimensional version of the K-means algorithm,
initialising it with two cluster centers, one at 0 and one at nG and letting it converge on
the optimal distribution. The K-means algorithm is one of the simplest non-parametric
clustering methods and represents a specialisation of EM algorithms. Our initial threshold
will be at mid distance between converged cluster centers as shown in Figure 3.7.

Figure 3.7: Threshold as defined by the clustering method

If segmentation results are not satisfying and a bias is observed in the output, either
towards segmenting background pixels as foreground or vice-versa, the threshold can be
modified by computing a weighted mean of the two cluster centers:

threshold = ClusterCenter1+biasCorrection∗ClusterCenter2
1+biasCorrection

This method will pull the threshold towards foreground or background clusters as neces-
sary.
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3.2 Shape Based Feature Extraction

In this section we will present the shape descriptors used in this work. Shape features
represent a class of descriptors whose sole purpose is to describe the shape of an object,
with no other information about color or texture. They usually require the image to be
segmented ([BCJ+08, CFB11, WBX+07, BB08, KNSS11]), meaning to be reduced only
to its shape, although active methods, such as the Active Polygon Method described in
[CTM+11], converge on the shape of an object while avoiding the need for segmentation.
Shape descriptors can be split into two categories: region based and contour based. While
contour based descriptors only take into account pixels from the edges of the shape, region
based descriptors take into account all the pixels of the shape. In this work we present
two shape descriptors aimed to complement each other:

• Fourier Descriptors: features containing the frequencial information of the contour

• Angular Radial Transform Descriptors: features encoding the shape regions in polar
coordinate frequencial bases

The reasoning behind this choice is that leaves have particular shape variances and that
shape features described in botanical dichotomous trees generally fall into two classes: the
general leaf shape (rounded, teardrop, lobed, etc.) and the edge type (smooth, jagged,
irregular, etc.). These two classes match well with the definitions of regional and contour
descriptors and while ART offers region based information, contour based FDs have the
potential of expressing the high frequency detail of leaf edges.

For comparison reasons and due to the simplicity of the Maximum / Average Degree
Descriptor, introduced at ImageCLEF 2011 in [CFB11], it is also presented in detail and
implemented as part of this work, although it is not part of the proposed plant recognition
system.

3.2.1 Fourier Descriptors

Frequencial analysis of shapes through Fourier transform is one of the oldest and most
often quoted methods of shape analysis and recognition. We can cite few of many publi-
cations centered around shape contour Fourier transform together with their applications:
shape analysis [ZR72], character recognition [TR94], shape coding [CB84], shape classi-
fication [KSP95] and shape retrieval [ZL01]. Most modern shape classification methods
benchmark their novel shape descriptors against FDs in order to prove their effectiveness
[LJ08, CFB11, BPK01, YAT11].

In the cited literature we find many different versions of FDs, with variations coming mostly
from different contour representations, such as complex coordinates, centroid distance,
etc. In [ZL01] a comparison of the most common representations is made, concluding
that transforming the contour into a 1D centroid distance signal has the best performance
on general shape recognition. The tests were run on the MPEG7 database described in
Section 5.1.1. Hence, we will describe this method in detail.
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Figure 3.8: Overview of the Fourier Descriptor computation with toy example

Computation of the contour from the segmented image is made by means of morphological
operators. The segmented image S is eroded, producing Se. The contour is then obtained
from Scontour = S − Se, the coordinates of all the remaining white pixels representing
the final ordered contour set C = {(x1, y1), ..., (xm, ym)}. The centroid is defined as the
average coordinate of the contour pixels:
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Centroid(xc, yx) =
1

m
·
m∑
i=1

(xi, yi)

A one dimensional contour signal Cs is therefore obtained by computing centroid distances
for each point of the contour:

Cs(i)mi=1 =
√

(xc − xi)2 + (yc − yi)2

The advantage of this representation is that Cs is already a translation invariant feature
of the original shape. Normalising Cs between 0 and 1 also achieves scale invariance:

Csn(i)mi=1 =
Cs(i)−minmj=1(Cs(j))

maxmj=1(Cs(j))−minmj=1(Cs(j))

The resulting scale and translation invariant vector is then linearly resampled to a fixed
number of points - ncontour - in order to achieve feature consistency between shapes and
also to provide the Fast Fourier Transform with a power-of-two size signal. Resampling is
done at equidistant perimeter points, meaning the distance between two points in the final
signal will be equal to the perimeter of the contour divided by ncontour. After resampling
we obtain the final spatial contour signal: Csig = (t1, t2, . . . tncontour).

The Discrete Fourier Transform - DFT - is a frequencial domain transformation and is
defined by its coefficients cn as follows:

cn =
1

N
·
ncontour∑
t=0

Csig(t) · exp (
−j2πnt
ncontour

), n = 0, 1, . . . , ncontour − 1

Each fourier coefficient cn is a complex number containing the magnitude and phase of
the nth frequency in the original signal:

Magnitude(cn) =
√
Re(cn)2 + Im(cn)2 Phase(cn) = atan(

Im(cn)

Re(cn)
)
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The phase component is dependent on the point on the shape at which we started to
sample the contour, the magnitude however is not. Using the Fourier magnitude from
each coefficient - also noted |cn| - will thus produce a shape descriptor which is translation,
scale and rotation invariant. The final feature vector - the Fourier Descriptor - for a given
shape is finally computed as:

FD = (
|c1|
|c0|

,
|c2|
|c0|

, . . . ,
|cncontour−1|
|c0|

)

Where all the frequency magnitudes are normalised by the first one, providing a more
robust scale invariance than the initial centroid distance normalisation. In practice, the
Fast Fourier Transform algorithm is used to compute DFT. FFT requires that the input
vector Csig has a length which can be expressed as a power of two, such as 64, 128, 256, etc.
Although the FFT requires specific contour sizes, its main advantage is that its complexity
is O(ncontour · log(ncontour)).

3.2.2 Angular Radial Transform - ART

The Angular Radial Transform was first introduced in [KK99] as a new scale and rotation
invariant region shape descriptor and shortly afterwards became adopted in the MPEG-7
standard [BPK01]. It has been successfully tested as a descriptor on logo matching in
[WN11] and on face recognition in [FQ03], but due to its origins in the signal processing
community, it does not benefit from the same amount of exposure in computer vision as
Fourier descriptors, for instance. A generalisation of ART is also presented in [RCB04]
which introduces linear deformation invariance in a more general descriptor.

The ART is a moment basis transformation, part of the larger family of Zernike moments,
whose moment bases are defined on a unit disk in polar coordinates (ρ, θ) as following:

Vnm(ρ, θ) = Am(θ) ·Rn(ρ)

Am(θ) =
1

2π
exp (jmθ)

Rn(ρ) =

{
1 n = 0

2 cos(nπρ) n 6= 0

Where Am(θ), Rn(ρ), m and n indicate the angular and radial moments and their respec-
tive degrees.
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Figure 3.9: Real (left) and Imaginary (right) components of Vnm with M = 9 and N = 7
angular and radial moments respectively

The above figure is a visual representation of 7 × 9 ART moments bases with constant
angular moment degrees for each line and constant radial moment degrees for each column.
Null values are represented as 50% gray, white values being positive, black values being
negative.

The ART transform on an image signal I(ρ, θ) is then defined as the inner product of the
bases and the image signal on the unit disk. The resulting coefficient for each basis is:

Cnm =

∫ 1

ρ=0

∫ 2π

θ=0
Vnm(ρ, θ)I(ρ, θ)dθdρ

Due to Vnm being complex, the ART coefficients are inherently complex as well. As was
the case with Fourier descriptors, the phase of these coefficients is rotational dependent,
their magnitude, however, is not. Therefore, we only use the magnitude information from
the ART transform for our descriptor. Scale invariance is achieved in a similar fashion
with FDs, by dividing all |Cnm| coefficient magnitudes by the magnitude of the first one,
|C00|. Once we establish the number of radial and angular components of the descriptor
as M and N respectively, the ART feature vector is defined by:

ARTDMN = (
|C01|
|C00|

,
|C02|
|C00|

, . . . ,
|CN0|
|C00|

,
|C10|
|C00|

, . . . ,
|CNM |
|C00|

)
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The final feature vector is M · N − 1 dimensional and is scale and rotational invariant,
however not translation invariant. In order to achieve translation invariance, we resize and
recenter the segmented leaf images I in the center of gravity of the foreground, as depicted
in Figure 3.10.

Figure 3.10: Resizing and recentering of a segmented image

Applying this procedure before ART basis decomposition will guarantee that the final
descriptor presents the three relevant invariances for our use case: rotation, translation
and size invariance.

The inverse ART transform is rarely mentioned in the literature as ART is most often used
as a shape descriptor and not an information encoder. We found it interesting however to
qualitatively analyse the output of the inverse transform in order to better establish ART
parameters and actually see the information maintained by the transform. The inverse
image Î(ρ, θ) is defined as:

Î(ρ, θ) =

N∑
n=0

M∑
m=0

Cnm · Vnm(ρ, θ)

In Figure 3.11 the inverse transform is visualised through 4 reconstructions of a segmented
leaf image with varying moment degrees.
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Figure 3.11: Orignal input image I compared to different ART inverse reconstruction
based on 24× 16, 10× 40, 20× 20 and 40× 10 angular and radial moments respectively

3.2.3 Complex network maximum degree descriptor

The maximum degree descriptor introduced in [BCB09] and also used by the IFSC/USP
group at the ImageCLEF 2011 task [CFB11], is a novel shape descriptor based on modeling
the shape contour as a graph and extracting a dynamic evolution signature from this graph.

In a similar fashion to the Fourier descriptor method previously mentioned, the leaf contour
is extracted and resampled to a fixed number of 2D contour points:

S = {s1(x1, y1), s2(x2, y2), . . . , sn(xn, yn)}

The obtained resampled contour S is then considered to be the set of graph nodes for a
small world complex network G =< S,W > where W is the normalised edge set defined
as follows:

d(si, sj) =
√

(xi − xj)2 + (yi − yj)2 E = {wij = d(si, sj)|∀si, sj ∈ S}

W =
E

maxwij∈E

The graph G thus obtained will be defined by nodes on the shape contour and edges
representing the normalised distance between each of these nodes.
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3.2. Shape Based Feature Extraction

The dynamic evolution signature of G is further defined for a distance threshold Tl ∈ [0..1]
as:

ATl = {aij |∀wij ∈W ;

{
aij = 0 wij ≥ Tl
aij = 1 wij < Tl

}

The dynamic evolution signature at Tl will consequently have a value of 1 for all edges
smaller than Tl. An example of signature evolution for three values of Tl is given below.

Figure 3.12: Network dynamic evolution for (a)Tl = 0.1, (b)Tl = 0.15 and (c)Tl = 0.2 as
described in [BCB09]

Considering the degree ki of an undirected graph node is defined as the number of edges
leaving or entering a given node, we can compute two degree values representative for a
given dynamic evolution signature: the maximum and average degree.

ki =
n∑
j=1

aij , kavg =
1

n

n∑
i=1

ki, kmax = max
i
ki

Normalisation for both kavg and kmax can be made by dividing them by the total number
of contour points n, in our case this is however unnecessary, as the input contour S always
has the same size. We note kavg < Tl > and kmax < Tl > the average and maximum
degrees of an evolution signature ATl produced by the threshold Tl.

The maximum/average degree descriptor is then defined as the concatenation of
(kmax < Tl >, kavg < Tl >) pairs for all L defined Tl’s resulting in a 2 × L-dimensional
feature vector:

DEG = (kmax < T1 >, kavg < T1 >, kmax < T2 >, kavg < T2 >, . . . , kmax < TL >, kavg < TL >)
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3. Theoretical Principles

Due to the definition of the maximum and average degrees, their values are inherently
invariant to the translation and rotation of a given shape contour. They are, however, de-
pendent on the dynamic evolution threshold values. Nevertheless, using the W normalised
edge set instead of E assures that all edge weights will be the same between identical
shapes, irrespective of size.

3.3 Local Feature Extraction

In opposition to general shape features, local features represent highly localised informa-
tion from small areas of an image, defined around interest points. It is assumed that
interest points detected through the same method on similar images will produce similar
local features. Although the main focus of this work is efficient and discriminative shape
descriptors, the use of basic local features was added for two reasons:

• Texture information: as shape descriptors only use a binary image of the leaf shape,
all potentially useful texture and color information such as leaf veins, is ignored.
Local features have the potential of representing such characteristics well.

• Natural photograph recognition: taking the first steps toward recognising leaves from
natural plant photographs in which the background is unconstrained.

The local feature extraction method we propose is based on the Scale Invariant Feature
Transform, grouped into a Bag-of-Words model. The combination of local features and
Bag-of-Words models is extensively used in the computer vision community for content-
based image retrieval and general object recognition [Low99, CDF+04]. The BoW feature
extraction process’ overview is as follows:

• For training data:

– Find points of interest in each image - keypoints

– Compute SIFT descriptors at each keypoint

– Obtain Bag-of-Words model by clustering all SIFT descriptors from all images,
irrespective of class labels, into nwords

– Extract final descriptor for each image as a word histogram of the image’s SIFT
descriptors

• For testing data:

– Extract test image keypoints and SIFT descriptors

– Compute word histogram of these descriptors using the trained BoW model

– Compare and classify word histograms as feature vectors

3.3.1 Keypoint detection and SIFT descriptor extraction

Most keypoint detection methods such as Laplacian of Gaussians, Hessian and Harris are
based on the gradient of the image, or similar light variation representations. They are all
based on the basic assumption that points of interest are found at local maximal gradient
locations, points which humans usually perceive as detail.
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3.3. Local Feature Extraction

We derive our current methods from qualitative analysis of leaf images, scan-like as well as
natural photographs from the field, and visual comparison of multiple keypoint detectors
(dense sampling, DoG[Low99], SURF[BTG06], MSER[MCUP02], Harris[FG87, HS88]):
Harris corner detection on opponent color channel and Difference-of-Gaussians - DoG -
on composite or intensity channel. Qualitative analysis of keypoint distributions show
that DoG is too sensitive to noise to be used on color based channels, such as saturation
or color opponent channels. DoG seems to better converge on leaf features when coupled
with intensity based channels which do not suffer as much from JPEG compression as does
color information. Harris corner detection, on the other hand, requires strongly contrasted
edges in order to find keypoints. It was thus coupled with color opponent channels.

The first keypoint detection method applies the Harris corner detection algorithm de-
scribed in [HS88] on a channel containing exclusively color information - O1. This oppo-
nent channel is inspired by the b channel from the L*a*b* color space and is computed
as:

O1 =
R− 2G+B

4
+ 0.5 O2 =

R− 2B +G

4
+ 0.5 I =

R+G+B

3

Where R, G and B are the respective RGB channels with values between [0..1]. The
resulting output consists of interest points mainly placed on corners or edges of the leaf’s
image. The reason we prefer using O1 rather than I is that it offers a degree of lightness
invariance and it is mostly unaffected by noisy backgrounds such as dirt, pavement and
other color uniform backgrounds as shown in Figure 3.13.

The second keypoint detection method employed is the Difference-of-Gaussians, which is
also the default SIFT keypoint detection process described in [Low03]. We use a composite
channel Cs for this method as color opponent channels can be noisy from compression
artifacts and DoG is more susceptible to noise than Harris corner detectors.

Cs =
R+G

2

√
S S =

max (R,G,B)−min (R,G,B)

max (R,G,B)

Where S represents the saturation channel of the image. The reasoning behind the con-
struction of this composite channel is based on leaf color characteristics: leaves are satu-
rated elements in an image, ranging in color from red to yellow to green. The composite
channel thus offers better contrast for such regions than the intensity channel.

Figure 3.13: Example of a leaf photograph taken against noisy background. The discussed
channels are shown and keypoint detection results are highlighted in light green.
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3. Theoretical Principles

Once the keypoints are extracted, we compute the SIFT described in [Low99] centered on
each keypoint. SIFT is based on image gradient value and orientation in a 16 × 16 pixel
grid around the keypoint.

Figure 3.14: SIFT descriptor as presented in [Low03]. Dimensions of the window and
histograms are reduced from the actual implementation for readability.

The gradient intensities are weighted by a Gaussian windows as indicated by the overlaid
circle and are afterwards accumulated in 4× 4 8-bin orientation histograms, depending on
their orientation. The resulting 128 dimensional feature vector is a robust representation
of gradient variation around a keypoint.

The channel used for keypoint detection and the one used for SIFT computation are not
necessarily the same. We also explore the possibility of extracting the SIFT features
from the intensity channel, while using the opponent and composite channels for keypoint
detection only.
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3.3. Local Feature Extraction

3.3.2 Bag-of-Words model

The Bag-of-Words model originated in natural language processing and information re-
trieval fields [Har54]. It is used to reduce the dimensionality of document classification by
defining sets, or bags, of words and measuring frequency of appearance of words from such
bags in documents. The resulting histograms are used to compare document similarity
instead of comparing each individual word.

Figure 3.15: Toy example overviewing the bag of visual words approach for image
content retrieval

In a similar fashion, it is used in computer vision to avoid the great computational expense
of matching local features. The Bag-of-Words model employed in this work is defined by
a dictionary, or word vector, in which each word represents a cluster of SIFT features
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3. Theoretical Principles

defined by unsupervised learning over all the features in the training set, irrespective of
class or image membership. More specifically, we compute the dictionary by k-means
clustering, initialising the algorithm with nwords clusters. The resulting converged cluster
centers represent the average SIFT descriptors, or visual words. The BoW descriptor is
then computed as a histogram, where each bin counts the number of SIFT descriptors
closest to the respective visual word from the dictionary, as shown in Figure 3.15.

3.4 Classification

General statistical classification is the process of identifying a set of categories, or classes,
to which a new observation belongs, on the basis of prior knowledge such as a training
dataset. More specifically, classification in this work will be the process used to assign
a certain plant species to an image, based on its feature set. It is also a subset of the
more general classification problem in statistics and machine learning, namely supervised
learning. We formalise the classification elements as follows

C = {ci|i = 1..nclasses} f = (a0, a1, . . . , am), f ∈ F T = {(fti, li)|i = 1..ntrain}

Where C represents the class set, f a feature vector in the corresponding m-dimensional
feature space F , ai is a feature attribute and T the training set of feature vectors and their
respective class labels. Hence, we are looking for a function Class(f) : F → C that assigns
a class label from C to a given feature vector f based on the data from T . Throughout
this work we will be looking for a classification method not only capable of attributing a
class label to a feature vector fs but also a confidence vector describing the probability
that a given sample belongs to a certain class:

Conf(fs) = {Pi|i = 1..nclasses, Pi = P (ci|fs)}

3.4.1 Closest cluster center classification

As an introductory specific example of classification we take a look at classifying an un-
known sample fs by attributing it to the closest class cluster center from feature space.
For each class we compute the average feature vector from T , representing the respective
class cluster center fci:

CC = {fci|i = 1..nclasses} where fci = avg{ftj |lj = ci, ∀j = 1..ntrain}

Class(fs) = cj |j = min
i

(dist(fs, fci))

The confidence vector can be computed by normalising dist(fs, fci)
−1 with the sum over

all the classes:

Conf(fs) = {Pi|, i = 1..nclasses, Pi = dist(fs, fci)
−1/

nclasses∑
i=1

dist(fs, fci)
−1}

The normalised distances can then be viewed as probabilities of class membership through
the reasoning that the closer a given class cluster center is to fs, the higher the proba-
bility of it being the correct class for fs. The distance measure function in practice can
be any meaningful distance function between m-dimensional vectors, such as L1, L2 or
Mahalanobis.
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3.4. Classification

3.4.2 K-Nearest Neighbours classification

Special interest was given to KNN due to the following reasons:

• Simplicity: it is one of the simplest classifiers with characteristics fitting our require-
ments.

• Efficiency: it requires no training computations and is easily handled by weak pro-
cessors. Its testing time, however, grows linearly with the size of the training set,
limiting the scalability of the classifier.

• Nearest Neighbour methods have been popular and shown promising results at the
ImageCLEF 2011 plant recognition task [GBJ+11, CTM+11, GJY+11]

The fact that KNN requires no training may also be particularly useful for in-the-field
plant recognition work as the database of known species can easily be updated on-the-fly
so that correctly identified new samples are further used for classification.

Analogously to closest cluster center classification, KNN is also based on distance measures
in feature space but instead of comparing fs to a class representative value, it compares it
to all samples of the training set fti, selecting the first k closest ones. We call the subset
of k-closest training samples K.

In the classical KNN approach, a voting scheme is applied through which fs is attributed
the class label l most often observed in K. The class score will therefore be a histogram
of label values. In our approach, each class vote is weighted by the inverse of the distance
between the respective feature and fs. The reasoning behind this weighting scheme comes
from observing images from plant species: a label may refer to very different shapes,
defining the leaf at different stages of its growth process for instance. This will be reflected
in feature space as high intra-class variance of the features and overlap of classes. Hence,
weighting the vote with the distance further localises the classification process.

We describe the classification process as well as the computation of the confidence vector
Conf through the following algorithm. A notable specialisation of the KNN algorithm is
1NN or Nearest Neighbour classification in which fs is simply given the class label of the
closest feature vector from T .
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3. Theoretical Principles

Algorithm 2 Weighted KNN with ranked classification

1: nclassified ← 0
2: confSum← 0
3: Sort T ascending by dist(fs, fti)
4: while nclassified < nclasses do
5: Zero(ClassScores)
6: for i = 1 to K do
7: ClassScores(li)← ClassScores(li) + 1/dist(fs, fti)
8: end for
9: (bestClassLabel,maxClassScore)← max(ClassScore)

10: Conf(bestClassLabel)← maxClassScore
11: confSum← confSum+maxClassScore
12: for all (ft, l) ∈ T do
13: if l = bestClassLabel then
14: T ← T − (ft, l)
15: end if
16: end for
17: nclassified ← nclassified + 1
18: end while
19: for all c ∈ Conf do
20: c← c/confSum
21: end for
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3.4. Classification

3.4.3 Random Forests

Random Forests - RF - are an ensemble classifier based on decision trees. They were first
introduced in [Bre01] and further analysed in [A. 11]. The method we describe and use
is based on bagging (Bootstrap aggregating) introduced in [Bre96] and random feature
attribute selection for decision tree training introduced in [Ho95].

The basic predictors used in the random forest classifier are decision trees. Decision tree
models - DT - predate machine learning techniques and have been used as a support tool
for decision making and analysis in fields such as finance and economics. In our specific
case, the DT model is used to classify features by applying threshold functions on their
attributes at each node as shown in Figure 3.16, with leaf nodes representing class labels.

Figure 3.16: Toy example of a decision tree for a 3-attribute feature vector
f = (a1, a2, a3) and three plant classes C = {Plant1, P lant2, P lant3}

The function Class(fs) is then defined by the evaluation of the DT with the attribute
instances of fs, starting from the root, until a leaf node is reached.

However, in order to obtain such a classifier the DT must be firstly trained in order to find
the attributes and their threshold values for each node, a procedure called Decision Tree
Learning. Notable examples of algorithms for DT learning are the ID3,C4.5 information
gain based methods introduced in [Qui86] and the Gini impurity based CART algorithm
introduced in [Bre84]. In both cases, the node attribute and its threshold are selected
by a greedy method searching for the best split of the training data with respect to class
labels. For each partition the best sub-split is computed and so forth, hence obtaining
the complete decision tree. Most notable problems with stand-alone decision trees are the
tendency to overfit the training data, if growth is not limited, and the greedy method
employed which does not necessarily find the optimal values. Another issue which makes
DT’s unsuitable for our use-case is that they only produce one class label per evaluated
feature vector, with no way of finding which other classes might represent the feature
vector. In other words, we are unable to compute the Conf set.

The random forests we use in this work contain an ensemble of small DT’s that have
been trained on random sub-samples of the data. The basic principle is that of predictor
bagging: an ensemble of many classifiers, aggregated to produce a strong one, may function
better than using one highly complex classifier. In our case, instead of training a single
DT on the complete training set and attribute set, a large number of small DT’s are
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3. Theoretical Principles

trained on random subsets of both samples from the training set and attributes from the
feature space. By varying the size of these two subsets we can effectively influence the ratio
between randomisation and correlation in the forest: large subsets will mean that the DT’s
are trained on more correlated information, resulting in smaller variance or randomisation
between them.

The particular method described in [Bre01] also presents the idea of out-of-bag estimates
used to avoid overfitting, compute attribute importance and estimate internal error. The
out-of-bag principle is as follows: because each DT from the RF has been trained on a
subset of samples, we can determine, for each training sample (ftk, lk), a subset of classifiers
from the RF which have not been trained on the respective sample, called the out-of-bag
classifiers. By evaluating ftk with the out-of-bag classifiers we can obtain cross-validation
errors for instance. Attribute importance can also be computed by permuting an attribute
am in all training samples from T and computing the out-of-bag error at each permutation.
If am is important, permuting it between samples will result in an increase of the error. If
not, it means the attribute has no discriminative value for the RF classifier and the error
is unaffected.

The classification produced by RF has the form of a voting scheme in which each DT’s
output label is counted in a class histogram which represents the forest’s confidence. The
histogram can be further normalised by the number of trees in the forest, producing values
which match our definition of Conf .

The RF classifier thus solves the problems we noted with stand-alone DT’s:

• it inherently reduces overfitting

• by varying the randomness to correlation ratio we can escape the local maxima
tendencies of the greedy method and obtain better classification

• a class confidence vector can be computed allowing for ranked classification
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3.4. Classification

3.4.4 Attribute selection

Attribute selection is a feature dimensionality reduction method we propose for the fol-
lowing reasons:

• Efficiency: reducing the number of feature dimensions - attributes - improves required
computational power

• Noise reduction: not all features extracted are relevant and some often add noise
and lower the classification performance

Motivated by the above, we propose to extract specific attributes at the training and
classification steps, typically the first Nd in descending order of their importance. We
propose two methods for measuring the importance of an attribute on T :

• Random Forest attribute importance, described in 3.4.3

• Attribute discriminance, described below

The attribute discriminance function D(ai) is computed as the inter-class variance divided
by the intra-class variance of an attribute:

µc = avg(ftj |lj = c,∀j); µ = avg(µc|∀c); σ2intra(ai, c) =
1

nc − 1

nc∑
j=1

(ftj [i]− µc)2

σ2intra(ai) =
1

nclasses

nclasses∑
j=1

σ2intra(ai, j); σ2inter(ai) =
1

nclasses − 1

nclasses∑
j=1

(µc − µ)2

D(ai) =
σ2inter(ai)

σ2intra(ai)

As a result, the D(ai) indicator will be higher if an attribute varies much between classes
and little inside them, thus estimating its discriminative power.
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3.4.5 Early / Late feature fusion

When using multiple descriptors or feature extraction methods, joining heterogeneous
features can be problematic as the values of each feature attribute do not have the same
significance or scale value. The problem of classifying with multiple descriptors can be
approached from two main directions:

• Early fusion: define a new feature vector composed of all the descriptors and classify
it as one entity

Figure 3.17: Early fusion diagram

• Late fusion: classify each descriptor separately and define a new Conf vector based
on each of the confidences from each separate classification.

Figure 3.18: Late fusion diagram

In the first case, a simple fusion technique would be to simply concatenate weighted feature
vectors into a larger one. In the second case, the Conf vector can be defined as a weighted
average of confidence vectors from each classification. The main advantage of early fusion
is that correlation between attributes from different descriptors can still be taken into
account by the classifier. In late fusion, however, such information is lost. The advantages
of late fusion are efficiency and parametrisation. Firstly late fusion classification time grows
linearly with the number of descriptors, whereas early fusion increases the dimensionality
of the feature space. Secondly, we can learn late fusion ratios or manually set them to
reflect separate importance for each descriptor.
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In this chapter we will present the application and implementation of the aforementioned
theoretical principles. Firstly, the system design will be explained, followed by details
about the implementation, highlighting original work and external libraries. Secondly
optimisation of the system is discussed due of its importance in the transition of the
system to real-world portable applications.
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4.1 System design

The basic system architecture can be split into a layer layout, in which the output from
each layer is the input for the next:

Figure 4.1: Overview of the automated plant recognition system proposed in this work

While discussing implementation details, we note where external libraries from OpenCV
have been used. If no mention is given, the respective elements have been implemented
from scratch. As much as possible, independent implementation was preferred in this work
in the hope of making it easier to port to other operating systems. OpenCV has been chosen
as source for external libraries and basic image manipulation (reading, writing, display,
etc) due to its open source code and availability on numerous operating systems (Linux,
Windows, Android and others). Also, to improve the prototyping process, each layer can
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4.1. System design

save its output to disk and read its input from disk so the system can resume from any
point in the computation process.

In Figure 4.2 we offer an overview of all the possible configurations of our system, based
on the layered architecture, as well as the methods introduced in Section 3.

Figure 4.2: Overview of the possible configurations of the system. Numbered cases
represent steps, unnumbered cases represent choices. The grayed links represent

implemented and tested elements which are however not part of the best and final
system configurations.

Although more configurations are discussed and tested in this work, we note two of the
most important:

• Shape-based recognition only: Images are segmented with own method, based on
k-means clustering, presented in Section 3.1. The only descriptors used are ART
and FD, presented in Section 3.2, applied to segmented images and fused late or
early. Attribute selection is discriminance based and the classifier used is Random
Forests.
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• Shape and local features based recognition: As before, images are segmented with
k-means clustering. Both shape descriptors are computed, as well as the SIFT+BoW
features introduced in Section 3.3. For keypoint selection we retain the slower but
better performing DoG, applied to the intensity channel. Attribute selection remains
discriminance based, while descriptors are classified individually through Random
Forests. Late fusion is applied to the resulting confidence vectors to obtain the final
result.

We further discuss the implementation of each separate layer, noting configurations and
default parameter values, where applicable.

4.1.1 Segmentation

The segmentation layer receives a color image as input and provides a binary image as
output at the same resolution as the input image. It implements the following segmentation
methods:

• Derivative based, described in Section 3.1.1, with parameters: smoothing window
size, derivative epsilon, starting black point, maximum threshold

• K-means clustering, described in Section 3.1.2, with parameters: starting black point,
starting white point, bias

• Otsu segmentation (OpenCV) [Ots79], only used with default parameters

While the Otsu method can be applied directly on a color image, we firstly need to extract
the mixed Blue-Saturation channel and perform clipping on it, as described in Section 3.1,
before running derivative or k-means based thresholding. Before training on a new dataset,
the output of the three methods is qualitatively analysed. Parameters are adjusted by
visually inspecting the errors and their characteristics such as falsely including background
in foreground, non contiguous areas, etc. The k-means segmentation method was finally
preferred on all datasets as it seemed to be the most flexible and robust. The a and b
parameters of the composite channel a ·(1−Blue(x, y))+b ·Sat(x, y) used for thresholding
were chosen to allow for correct segmentation of complex leaves without adding too much
shadow noise. The default values of a = 0.8 and b = 0.2 worked well on all datasets.
Default starting black point and white point are set at 5 and 100 respectively, for a 8-bit
composite channel image. After visual inspection of the segmented output and counting
of the falsely segmented images, we found that the method has 99% success rate on all
the leaf shape datasets in which the leaf is photographed against an almost white, uniform
background. We obtain this figure by looking at individual images and counting the cases
in which segmentation failed to produce a good shape of the image (falsely segmented
backgrounds, shadows, etc). However, in many cases, small shadows are present around
the leaves, which, if falsely segmented, do not significantly alter its shape. We consider
these cases as successful segmentation as well.

4.1.2 Shape descriptor extraction

Shape descriptors receive a binary image in input and produce a descriptive feature vector
of the shape it contains.
We have implemented the three shape descriptors presented in Section 3.2 :
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• ART descriptor, with parameters:

– resolution - the working resolution at which the descriptor is computed

– N - the number of radial bases

– M - the number of angular bases

– ART base indexes - vector of base pairs (n,m) indicating which bases to com-
pute, all N ×M bases are computed if vector is empty

– number of features - the number of ART coefficients to be computed and re-
turned, must correspond to size of the ART base index vector

• FD, with parameters:

– contour size - the number of points at which the contour will be resampled
(both up- or down-sampling)

– number of features - the number of FD coefficients to be computed and returned

• Maximum/Average Degree Descriptor - DEG, with parameters:

– number of network nodes - the number of points at which the contour will be
resampled (both up- or down-sampling)

– number of thresholds - indicates how many shape signatures will be computed

– (min threshold, max threshold) - defines the thresholding interval

The ART descriptor has been tested at various resolutions, radial and angular degrees,
both quantitatively, by error analysis, as well as qualitatively, through observations of
the inverse ART transform. Qualitative analysis of bases importance is also done by
applying the attribute selection methods from Section 3.4.4. We have found that the
angular moments are much more important for leaf description than the radial ones and
that resolution values over 100×100px do not show significant improvement on any of the
datasets used in this work. We discover that as a rule of thumb, a ratio varying from 1/2 to
1/4 between the radial and angular degrees produces coefficients with good discriminative
properties. These conclusions are also confirmed by [FQ03] where a set of 3×12 frequencies
is used for face recognition, as well as our own attribute importance analysis in Section 5.4.
However, our system reduces the optimal parameters to choose to only one: the number
of ART coefficients to be extracted, through the implementation of the attribute selection
method described in Section 4.1.4.

The implementation of Fourier descriptors is based on the Fast Fourier Transform algo-
rithm which reduces the computational complexity of the DFT from O(n2) to O(n·log(n)),
where n is the number of points on the contour. The only requirement is that n has to be
a power of two. Only the largest contour detected in the image is used and it is resampled
to a stable 4096 points. The resulting 1D centroid distance signal is given to the FFT,
obtaining 2048 useful contour frequency coefficients. From these 2048 coefficients, the first
”number of features” coefficients are returned as dictated by the parameters. Attribute se-
lection is not implemented as it brings no computational benefits from a feature extraction
point of view because FFT needs to compute all frequency coefficients to work properly.
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The descriptor is however fast enough to not need any type of further speed optimisation
as concluded in Section 5.4.

The DEG descriptor has been implemented only for comparison purposes as it was suc-
cessfully used in combination with statistical classifiers in [CFB11]. The potential of DEG
coupled with KNN and Random Forests has been investigated but due to low performance
the default parameters were not further optimised. Tests with a number of thresholds any-
where between 10 and 100 from the interval [0 · · · 0.5] showed no particular improvement
in performance when used with the aforementioned classifiers.

For a given binary image, the system can provide each shape descriptor separately or
concatenated. ART and FD respectively are scaled before concatenation, either by multi-
plying each descriptor with a given coefficient or by choosing a ratio as to have the same
maximum variance in both ART and FD. This process effectively performs early fusion as
described in Section 3.4.5.

4.1.3 Local feature extraction

The SIFT + BoW model described in Section 3.3 is used in this work by taking full
advantage of the implemented OpenCV methods. It receives a color image as input,
derives a single-channel image and uses it for extraction of the visual word representation
feature vector. Most of the necessary steps for local feature extraction are offered by
pre-implemented functions:

• Keypoint extraction - both Harris and SIFT-DoG methods are implemented, how-
ever, with no possible parametrisation

• Descriptor extraction - SIFT descriptor extraction with no parametrisation

• BoW training - is achieved by the K-means++ algorithm, taking the vocabulary size
as the K parameter for clustering

• BoW feature extraction - computes the word histogram without any parametrisation

Through ”no parametrisation” in the above, we mean the respective methods offered by
OpenCV have no parameters to tune their behaviour. Because the keypoint extractors have
no parameter for the maximum amount of keypoints detected in an image, we implemented
a random sub-sampling procedure which randomly selects a number of keypoints from the
keypoint vector if its size is greater than the maximum number permitted. The only
variables which affect the performance of the algorithm are thus

• Single-channel input image definition - selection of intensity channel, color opponent
channel, saturation channel, etc

• Maximum number of keypoints

• BoW vocabulary size

For natural photographs, the definition of the input image is done by analyzing different
channels and color space transformations of the plant images and the keypoint positions.
We are looking for a channel which presents rich gradient information on the leaf surfaces
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without introducing noisy keypoints. Through this analysis we defined two separate meth-
ods described in Section 3.3.1 which are compared in Section 5.3.2. For scan-like images
however, the default light intensity channel is used.

The maximum number of keypoints per image used for BoW training has been limited to
2000 due to memory limitations and the fact that in most cases, when an image produced
more than 1500 keypoints, they were on noisy backgrounds such as tarmac or dirt. In
comparison, scan-like images produce an average of 300 DoG or 100 Harris keypoints.

The default BoW vocabulary size has been set at 1000 words to insure that enough words
exist to separate noise generated keypoints from relevant ones. The vocabulary size usually
varies between 1000 and 5000 in the content-based image retrieval literature by [Low99,
CDF+04] and our tests indicate that vocabulary sizes of more than 500 words do not
alter the method’s performance on leaf classification. Visualising the attribute importance
measures shows that the actual number of highly discriminative words is in reality much
lower than 1000.

4.1.4 Attribute selection

Attribute selection accepts as input a feature set and a number Nd of attributes to be
selected. The attribute selection layer then plays a double role, being used to find the
importance of attributes on training data and extract the important attributes from both
training and testing data before classification or training. These roles can be formalised
in two methods:

1. Generating indexes of the most discriminative features, ordered by their importance
as defined in Section 3.4.4

2. Extracting a new feature set from a given one, considering a vector of attribute
indexes and Nd

Attribute selection is performed by using the output of the first method as the index vector
for the second. However, separating the two is necessary for feature extraction optimisa-
tion: The ART descriptor is especially computational intensive, requiring N×M×(Image
resolution)2 computations to obtain a N×M feature vector, as it needs to multiply each
pixel of the image with each corresponding pixel from all the bases. This requirement can
be greatly improved by means of attribute selection through the following procedure:

• Firstly, we compute ART at 700×700px, with 15×30 bases, on the entire training
set. We chose these values to be at least the double of other ART parameters found
in the literature, giving us a very high detail ART feature vector.

• Secondly, we use our attribute selection method to generate the indexes of the most
discriminative ART bases, ordered by their importance.

• Finally, when testing, ART will only compute the most important coefficients at
feature extraction, requiring no further selection before classification.

The above procedure can be used either to reduce the feature dimension by removing
unuseful attributes, or to improve the feature vector quality for a given feature size. It
trains, in essence, the feature extractor to produce only the more discriminative features.
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We chose a maximum of 15×30 bases, to insure that all of the potentially important bases
are computed.

In the case of FD, DEG and BoW, the output indexes from the feature selection are not
used in descriptor computation as it provides no performance benefits. However, attribute
selection can still be performed before the classification layer to produce lower dimensional,
more discriminative feature vectors, improving the classification or the training time.

4.1.5 Classification

The classification layer receives a feature set as input and, similar to the attribute selection,
has two functions depending on the type of data used - training or testing:

• Training: Based on T , produce classifier models Mc

• Testing: Based on Mc, attribute a class label to testing sample fs

In this layer, the only use of OpenCV was for Random Forests as they provide an accessible
implementation of the algorithms described in [Bre01].

Depending on the classifier type used, different parameters can be set:

• Closest Cluster: no parametrisation

• KNN: the number of closest neighbours used for score calculations, K

• Random Forests1:

– Compute variable importance - tells the RF to evaluate the attribute importance
vector described in Sections 3.4.3 and 3.4.4 during training.

– Maximum tree depth - sets the individual DT depth at which the growth is
stopped

– Number of active variables - establishes how many attributes are randomly
selected for the training of each DT

– Minimum sample count - represents the minimum number of samples requesting
a split in the tree at a certain node in order to actually perform the split

– Number of DTs in the forest

The K parameter will be chosen by cross-validating training sets and choosing the value
which produces best performance. Interestingly enough, all tests indicate that for any K
> 1, the general performance of the plant recognition task decreases so the default value
for K is 1.

Default random forest parameters are those proposed in [Bre01]: minimum sample count
of 1-2, a maximum tree depth of 20-30, and the number of active variables equal to the
square root of the total attribute number. The number of DTs in the forest is set high in
comparison to the suggested value of 100. It is set to 1000 if no memory constraints are
existent, but it can be set lower if required by the machine. The reasoning behind such a

1Detailed description for all OpenCV RF parameters can be found on http://www.iib-
chemnitz.de/cvwrapper/onlinehelp/html/55ec6b4b-21a7-4eb1-1d6d-76316fe31974.htm

50



4.1. System design

high number of trees is that the classification result Conf(fs) will be obtained through a
voting scheme and requires a large vote count to distinguish between each class.

In this work, the Random Forest implementation from OpenCV has been slightly modified
to allow for exportation of the tree voting vector. By default, the RF implementation -
CvRTrees - only allows rank 1 classification. A variant of the CvRTrees.predict function
was made to output the voting results normalised by the number of trees in the forest,
called CvRTrees.predictAllProbs.

We present, in the following table a short comparative of these classifiers by complexity:

Classifier Training complexity Testing complexity for a sample

Closest Cluster O(n) O(m)
KNN - O(n ·m)

Random Forests Ô(k · n ·m) O(k · dmax)

Table 4.1: Computational complexity overview of classifiers, where n is the size of the
training set, m is the number of classes, k is the number of DTs and dmax is the

maximum depth of DTs in the RF

Notable remarks from the computational complexity analysis of these classifiers:

• Closest Cluster classification has constant testing complexity irrespective of the num-
ber of training samples

• KNN requires no training but testing complexity increases linearly with the number
of training samples

• RF testing complexity is also independent of training data size and furthermore
remains constant relative to the number of attributes of the features set. This is
translated in excellent scaling on high dimensional feature vectors. The exact training
complexity of Random Forests is difficult to determine mathematically because of
the randomness introduced by the different parameters. However, measurements of
execution times show that for a given parameter set, training time grows linearly with
the number of samples in the training set and attributes, establishing an estimated
complexity of Ô(k · n ·m):

Figure 4.3: Training times on a 2000×200 sample training dataset in function of feature
dimension and sample count, with default parameters
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4.2 Optimisations

In this section we discuss a few technical details relevant to the speed optimisation of
our system, mainly, speeding up the ART feature extraction as well as the random trees
cross-validation through multi-threading.

4.2.1 ART optimisation

From an algorithmic point of view, general ART is computed as follows:

Algorithm 3 ART coefficient extraction

Base computation:

1: for n = 1 to N do
2: for m = 1 to M do
3: ARTbases(n,m)← computeBase(n,m)
4: end for
5: end for

Coefficient extraction:

1: for n = to N do
2: for m = 1 to M do
3: for x = 1 to imgResolution do
4: for y = 1 to imgResolution do
5: ARTcoeffs(n,m)← ARTcoeffs(n,m) +ARTbases(n,m, x, y) · img(x, y)
6: end for
7: end for
8: end for
9: end for

We propose two notable improvements:

• Firstly, we notice that img, being a binary image, has values of either 0 or 1 for
background or leaf pixels respectively. Considering that the average total surface
of a leaf in an image is about 30% of the total image surface, 70% of computation
cycles are wasted multiplying base pixels with 0. Therefore, we use a new coefficient
computation algorithm which computes ART coefficients only for non-null pixels.

• Secondly, by computing only bases selected by the attribute selection method pre-
sented in Section 4.1.4, we reduce the dimensionality of the ARTbases structure,
allowing for better index optimisation by the compiler.
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The efficient algorithm is hence defined:

Algorithm 4 Efficient ART coefficient extraction

Base computation:

1: Read base index vector Biv of size Nd

2: for i = 1 to Nd do
3: ARTbases(i)← computeBase(Biv(i).n,Biv(i).m)
4: end for

Coefficient extraction:

1: for x = 1 to imgResolution do
2: for y = 1 to imgResolution do
3: if img(x, y) > 0 then
4: for i = to Nb do
5: ARTcoeffs(i) = ARTcoeffs(i) +ARTbases(i, x, y)
6: end for
7: end if
8: end for
9: end for

The efficient algorithm represents a 3-fold computational time improvement over the gen-
eral one for the same number of computed bases. It can be made equivalent with no base
selection by generating Biv with all N ×M indexes. Furthermore, it produces features
ordered by importance.

4.2.2 Random Forests multi-threading cross-validation

Due to the training time requirements of Random Forests, leave-one-out cross-validation
becomes highly unpractical for parameter testing. However, most modern machines have
dual- or quad-core CPUs with simultaneous multi-threading technologies, allowing for
efficient execution of up to 8 simultaneous threads. As a result, we have implemented a
random forest multi-threaded cross-validation method which delivers leave-one-out results
from a 200 dimensional, 7000 sample dataset in about 45 minutes, using 8 threads on a
Intel Core i7-2600K Processor with a clock frequency of 3.5Ghz. The method splits the
task of testing each sample of the training set T , of size ntrain, into nt subsets of size
ntrain/nt, retrieving classification errors from each thread and computing the total error.
Although random forest have internal estimators for training and cross-validation error
based on the out-of-bag classifiers described in Section 3.4.3, we have found that actually
retraining the classifier for each test produces more stable error estimates.
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In this section we will look at system performance, comparisons against the state-of-the
art, as well as quantitative and qualitative analysis of how different system configurations
and parameters affect performance and execution time.

5.1 Datasets

The structure of the data used to test our method is further described. We have collected
four different datasets, used in general shape recognition and plant recognition in the state-
of-the art methods in order to have a level-playing-field basis for performance comparison.

5.1.1 MPEG7 CE-1

MPEG-7, formally named ”Multimedia Content Description Interface”, is a standard for
describing multimedia content in a way easily accessible or analysed by computers. It
contains both the raw multimedia data as well as descriptors such as ART. The descriptor
choices are validated by testing them on general shape datasets. The MPEG7 CE-1 dataset
used in this work, as well as in [LJ08, ZL01, LJ05] is a shape dataset, meaning it only
contains binary images of various shapes, as shown in Figure 5.1

The dataset has the following properties:

• Size: 1400 images in total

• Class distribution: 70 classes, 20 images each

• Resolution: varying from 150×150px to 800×800px

Figure 5.1: Example of images from the MPEG7 CE-1 dataset
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5.1.2 Plummers Island 2011

The Plummers island dataset was collected and maintained by the botanists from the
Smithsonian Institution National Museum of Natural History. It was assembled as part of
a joint effort described in [BCJ+08] to create the first working prototype of an automated
plant identification system. It is defined as both leaf images and their segmented shapes.
The leaf images are of particularly high quality and consistency, being previously flattened
and then photographed in a controlled photographic studio environment.

Figure 5.2: Example of images from the Plummers island dataset

It is notable that there is very little lighting and white balance variance between images.
The advantage is that the dataset offers as close to perfect samples as possible for training.
However, this is not necessarily a positive influence for an automated system as in-the-
field images will often exhibit high variances in lighting. Training a system on noisy data
may be important for it to learn to discriminate noise from relevant features. It depends,
of course, on the descriptors and classifier characteristics, but it is possible for a system
trained on perfect samples to behave badly in real-world applications.

The dataset has grown throughout the years, from the 5000 images distributed in 153
classes in 2008 to the current size in 2011 that we use in this work:

• Size1 : 7152 images in total

• Class distribution: 203 classes, 5-90 images per class, with an average of 30

• Resolution: fixed at 512×512px

1actual size is about 14304 images as each leaf is represented in photographs and segmented images
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5.1.3 Swedish leaves

The Swedish leaf dataset comes from a leaf classification project at Linkoping University
and the Swedish Museum of Natural History [Sod01]. The dataset was used for the sole
purpose of comparing our system against the IDSC descriptor, namely the results specified
in [LJ08]. We used the already segmented shapes that came in the IDSC experiment
package2. The dataset characteristics are as follows:

• Size: 1125 binary images in total

• Class distribution: 15 classes, 75 images per class

• Resolution: fixed at 256×256px

5.1.4 ImageCLEF Pl@ntLeaves 2011

Figure 5.3: Illustration of the 3 types of images for 4 species from the PL@ntLeaves
dataset as shown in [GBJ+11]

2The IDSC code and datasets can be downloaded at: ”‘http://www.dabi.temple.edu/ hbling/code data.htm”’
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The dataset used for the ImageCLEF 2011 plant identification task results from a collab-
orative effort from voluntary contributors mainly from the Metropolitan French territory.
It encompasses images from 71 species, 269 individual plants, taken by 17 contributors,
producing a dataset of 4500 images.

The plant images are split intro three classes:

• Scans: images of flattened leaves against an almost perfect white background

• Pseudoscans: photographs of leaves taken against a uniform background

• Photographs: images of entire plants in nature or of leaves against non uniform
backgrounds.

The main statistics of the Pl@ntLeaves datasets are overviewed in the following table:

Figure 5.4: Table overviewing important Pl@ntLeaves statistics as shown in [GBJ+11].
Corrections were made to the table, as indicated figures were not identical to the dataset

made available on-line.

Each image from the dataset is accompanied by a .xml file containing information about
the content such as plant species and taxon, plant ID, photographer, GPS coordinates.
Because the dataset is created by more contributors under varying lighting conditions and
styles of photography, it represents more accurately real-world data. Variances for each
leaf species are - but not limited to - background, white balance, lighting source (sunny,
flash, cloudy, etc.), leaf color, leaf age.

Due to the collaborative nature of the dataset, a bias correction method has been in-
troduced in [GBJ+11], its purpose is to distribute the evaluation scores equally amongst
contributors and individual photographed plants. The score metric is defined on each
testing set as:

S =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

1

Nu,p

Nu,p∑
n=1

su,p,n

Where U is the number of contributors for the set; Pu is the number of individual plants
photographed by the u-th user; Nu,p is the number of pictures of the p-th plant in the set
and su,p,n is the classification score (0 or 1) for the n-th picture of the p-th plant taken by
the u-th contributor.
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5.2 Comparison with IDSC

IDSC results presented in this section are computed using the original code and data3

presented in [LJ08]. The Matlab code obtained is however only capable of leave-one-out
cross-validation on datasets of 1400 images split into 70 classes with 20 images per class,
the same structure as the MPEG-7 CE-1 dataset. In order to correctly compare our system
performance with IDSC and because the Plummers Island dataset has grown considerably
in the 4 years between the publication of [BCJ+08] and this work we have performed a
selection from the dataset as follows:

1. select the 70 plant species which have the most images per class from the 203 in the
database

2. for each species selected, randomly select 20 images representing it

The dataset constructed in this manner is further referred to as Plummers Island 70.

5.2.1 Experiment setup

Datasets: MPEG7 CE-1, Plummers Island 70, Plummers Island and Swedish Leaves.
Descriptors: ART and FD
Fusion method: Early - simple concatenation
Attribute selection: none
Classifier: Random Forests
Evaluation method: Leave-one-out cross-validation
Parameters:

• IDSC: 128 contour sample points (as in [LJ08])

• ART: 14 angular × 7 radial basis, no basis selection

• FD: 32 coefficients

• Early fusion result: 129 dimensional feature vector

• Random Forests: minimum sample count = 10, maximum tree depth = 25, number
of active variables =

√
129, number of DTs = 600

Remarks:
Due to the high sample count of Plummers Island dataset and the need to train 8 decision
trees simultaneously for sensible cross-validation times, we were limited by memory in our
parameter choices. The default maximum values of 30×15 ART bases, 128 FD coefficients
and 1000 DTs were reduced accordingly. For the same reasons, the minimum sample count
required to split a node has been increased to 10. If the minimum sample count is too low
the trees will have too many splits and require large amounts of memory. Whilst these
limitations were not necessary for the smaller datasets, we kept these values for consistency.

3Code and data can be downloaded from: ”‘http://www.dabi.temple.edu/ hbling/code data.htm”’
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5.2.2 Results

Method MPEG7 CE-1 Plummers Island 70 Swedish leaves

IDSC 84.5% 52.8% 94.1%

ART+FD 92.9% 62.1% 96.5%

Table 5.1: Rank 1 results comparison with IDSC

Having a much better precision than IDSC on MPEG7 CE-1 comes as no surprise because
ART was chosen as an MPEG7 descriptor due to its performance on this dataset, we notice
considerably better performance on the Plummers Island 70 dataset and slightly better
on the Swedish Leaves dataset. It is notable that it took our system under 45 minutes to
compute the leave-one-out cross validation on the MPEG7 CE-1 or Plummers Island 70
datasets while IDSC required over 20 hours.

We also perform leave-one-out cross-validation on the entire Plummers Island dataset with
the following result:

Rank 1 3 7 10

ART+FD 56.2% 77.58% 88.49% 92.23%

Table 5.2: Cross-validation results on the entire Plummers Island dataset

Plotting the ranked precision over the IDSC results image provided in [BCJ+08] shows the
relative performance:

Figure 5.5: IDSC results from [BCJ+08] with overlayed ART+FD results
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We notice that we obtain very similar performance measures as IDSC, slightly outper-
forming it, on a much more complex version of the dataset. The original performance
plot, taken from [BCJ+08] is obtained by running leave-one-out cross-validation on the
2008 version of the Plummers Island dataset, composed of 157 classes and approxima-
tively 5000 images in all. Our algorithm was tested with the same validation scheme,
however, on a version of the dataset composed of 203 classes and approximatively 7100
images. Because our results are based on a larger dataset, containing 46 more classes, as
well as the fact that classification error generally increases with the number of classes, we
expect the difference between our method and IDSC to be actually larger than this direct
comparison. By comparing our cross-validation run time of under 45 minutes with the
20 hours necessary for IDSC to cross-validate, we note the significant efficiency difference
between the two methods.

5.3 Performance on ImageCLEF 2011 Pl@ntLeaves dataset

In the following section we look at our system performance on the Pl@ntLeaves dataset,
discussing parameter choices and comparing final results with those from other groups
participating at ImageCLEF 2011.

In the first step we only use the scans and psudoscans from the training part of the dataset,
3041 images in all. We split the data by randomly sampling approximately 20% of the
training images from each class, thus constructing a test dataset we use for parameter
validation. When resampling, we respect the original proportions of the number of images
per class, thus achieving a balanced testing set of 580 images, containing all 71 classes
in the same proportion as the training set. As we want to train our system for optimal
performance indifferent of the plant or contributor, we apply the bias correction method
described in Section 5.1.4 when validating our results.

In the second step, we apply a similar split on natural photographs from the dataset and
analyse SIFT+BoW performance.

In the third step, we run our system on the test part of the dataset, comparing final results
with those from the ImageCLEF 2011 plant identification task. The bias correction method
is once again employed.

Although not detailed in this section, the DEG descriptor was also tested on the Pl@ntLeaves
dataset with both Random Forests and KNN classifiers. No matter the parameter choices
it did not exceed a rank 1 precision of 35% on any of the datasets. Due to its much
lower score than the other descriptors, we decided not to include a detailed comparison,
although it is included in the implementation so that it can be tested in future versions of
this system, preferably with other classifiers.
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5.3.1 Scan and Scan-like image training

Datasets: Pl@ntLeaves 2011 training set, split into 580 test images and 2461 training
images containing 71 classes each
Descriptors: ART, FD and SIFT-BoW for scans and pseudoscans
Fusion method: Late - weighted confidence mean
Attribute selection: none
Classifier: Random Forests and KNN
Evaluation method: same as in [GBJ+11] on selected training subset
Parameters:

• ART: 30 angular × 15 radial basis, 200×200px resolutions, no basis selection

• FD: 128 coefficients

• SIFT-BoW: DoG keypoints on light intensity channel, max keypoints = 2000, vo-
cabulary size = 500

• Random Forests: minimum sample count and number of active variables are opti-
mised; maximum tree depth = 25, number of DTs = 1000 remain constant

• KNN has been used as nearest neighbour classifier, with K = 1

Remarks:
We aimed to have the highest possible values for feature size while still remaining compu-
tationally feasible. We allow this reasoning as the architecture of our descriptors means
that adding more features has little chance of being destructive for classification. Late
fusion was used in which the confidence vectors from each descriptor were weighted. The
reasoning applied was that shape descriptors and local descriptors do not perceive the
data in a similar way, some classifying certain species better than others. This can lead to
contradictory best split computation in the Random Forest and decrease its performance.
In a similar fashion 1NN is sensitive to scaling of each attribute and early fusion would
have counter-productive effects. The optimal late fusion weights are found by brute force.

Random Forest parameters are optimised, searching for values between 1 and 100 for both
minimum sample count and the number of active variables by training each tree 10 times,
averaging the final result and selecting parameter values which achieved the best rank
1 bias corrected precision. We first searched for the optimal number of active variables
with a fixed minimum sample count of 1, then for the best minimum sample count with
the number of active variables fixed to its optimal value. It is notable that generally a
minimum sample count of between 1-2 produces optimal results but also very large forests
because of the high number of splits. We have found that the parameter can usually be
increased to 10 without loss of precision, sometimes actually improving performance. After
our tests we find the following optimal random forest parameter values for each descriptor:

• ART: minimum sample count = 15, number of active variables = 30

• FD: minimum sample count = 13, number of active variables = 20

• SIFT+BoW: minimum sample count = 5, number of active variables = 30

Firstly, we look at the performance of individual descriptors, classified with both 1NN and
Random Forests and without any bias correction, in order to highlight the bias effects in
later comparisons.
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Figure 5.6: Ranked results of individual descriptors on extracted test set, without bias
correction. Ranks are on the horizontal axis, vertical shows precision in %

The SIFT+BoW has surprisingly good results on scans-like images, outperforming both
ART and FD, showing over 95% chance of providing a correct result in the first 3 returned
matches. The difference between descriptors and classifiers used, however, becomes smaller
when looking at higher rank results: no matter the descriptor or classifier, there is a greater
than 90% chance to obtain the correct class in the first 6 proposed matches. We also
note that Random Forests produces better results than 1NN while classifying our shape
descriptors, ART and FD. If we consider the overall classifier’s performance as an average
on all three descriptors, Random Forests has an edge over 1NN, however not by much:
average RF rank 1 classification score being 73% versus 69% for 1NN.

We will now analyse the influence of bias correction:

Figure 5.7: Ranked results of individual descriptors on extracted test set, with bias
correction. Ranks are on the horizontal axis, vertical shows precision in %
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Having applied the correction, the plots become less smooth because of high value classifi-
cations: images in the training set vary from 1 to 13 per plant, some being more valuable
than others. When applying this correction all plants and contributors get the same im-
portance and some images belonging to plants that are not well represented in the dataset
gain more weight. It is important to look at corrected results to avoid optimising the
algorithm only for plants that are well represented in the dataset. The same remarks as
before apply, SIFT+BoW having the best performance with 1NN. General score has de-
teriorated, especially in the first 3 ranks, where it is over 10 percentage points lower. The
strongest negative influence of the bias correction was on SIFT+BoW and RF, where the
rank 1 score plummeted by 20 percentage points, meaning that it achieved its previous
high score by correctly classifying images from well represented plants. We notice ART
and FD generalise better when the sample count per class is smaller and especially the
good performance of simple FDs classified with Random Forests.

Once individual descriptors and classifiers have been optimised, we will search for the best
late fusion ratios used to obtain the final confidence vector:

Conf(fs) = RatioART ·ConfART (fs)+RatioFD ·ConfFD(fs)+RatioSIFT ·ConfSIFT (fs);

Due to the small dimensionality of the optimisation problem, we search for the best
Conf(fs) by looking at all possible ratio combinations in [0..1] in steps of 0.1. This
process is done on both Random Forests and 1NN, resulting in the following best ratios:

• Random Forests: RatioART = 0.4, RatioFD = 0.2 , RatioSIFT = 0.4

• 1NN: RatioART = 0.1, RatioFD = 0.1 , RatioSIFT = 0.8

Figure 5.8: Ranked results of late fusion with optimal parameters and bias correction.
Ranks are on the horizontal axis, vertical shows precision in %
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The late fusion results show a considerable improvement over the individual descriptor
results. 1NN outperforms RF, mainly because of the high classification rate of SIFT fea-
tures. Indeed, the optimal ratios found show that the fusion achieves this high result by
using mostly SIFT based confidences. Fusion on the Random Forests shows much more
balanced results, with ART and SIFT receiving equal importance in the final result. We
should interpret these high precision rates only as validation on the training set and it
comes naturally that optimising parameters on this set produces excellent results. There-
fore we must judge the true performance of the system as well as the generalisation of our
parameter choices on the testing set.

5.3.2 Photograph training

In order to train SIFT-BoW on photographs we used the same parameters and method as
for scan-like images with the exception of the keypoint detection method. The 930 image
training dataset was split into 200 testing images and 730 training images. Because the
natural backgrounds contain much more noise than the scan-like images, many intensity
channel-based keypoints focus on those areas instead of the leaves themselves. We look
to improve on this by using other channels for keypoint detection as described in Section
3.3.1. Descriptor information however was still based on the intensity channel information.

Figure 5.9: Keypoints detected by Difference of Gaussaians on Intensity and Composite
channels and by Harris corner detection on color opponent channel detailed in Section

3.3.1

The choices of keypoint detectors and color channels were based entirely on qualitative
observations of their behaviour on photograph images, their general performance being
compared in Table 5.3.
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Although it seems that the Harris method is superior in identifying interesting gradient
points on and around a leaf, the test results indicate other-wise:

Rank 1 10

DoG on Intensity 16.3% 55.2%

DoG on Composite 13.9% 53.6%

Harris on opponent channel 1.3% 21.2%

Table 5.3: SIFT+BoW results with different keypoint extraction methods

To explain this unexpected behaviour we can offer two main reasons. Firstly, the Harris
corner detector tends to stay on leaf edges, not offering any gradient information from
the leaf surface. Secondly, the correlation between the O1 channel and the intensity
channel may be low, therefore keypoints detected on O1 will not correspond often to similar
gradient variations on the intensity channel, producing very different SIFT descriptors. For
testing on photographs we therefore use simple SIFT+BoW with DoG keypoints on the
intensity channel.

5.3.3 Testing

Datasets: Pl@ntLeaves 2011 training and testing sets,
Descriptors: ART, FD and SIFT-BoW
Fusion method: Late - weighted confidence mean
Attribute selection: none
Classifier: Random Forests and KNN
Evaluation method: same as in [GBJ+11]
Parameters:

• ART: 30 angular × 15 radial basis, 200×200px resolutions, no basis selection

• FD: 128 coefficients

• SIFT-BoW: DoG keypoints on light intensity channel, max keypoints = 2000, vo-
cabulary size = 500

• Random Forests: optimal parameters found in training, as detailed in Section 5.3.1

• KNN has been used as nearest neighbour classifier, with K = 1

Remarks:
As described in the ImageCLEF plant image classification task report, we test our system
on scan, pseudoscan and photograph type images separately and apply the bias correction
described in Section 5.1.4 for each test sample classification:
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Figure 5.10: Results of the current system on scan and scan-like images compared to
participants from the ImageCLEF 2011 plant recognition task

General system performance on scan and scan-like images is outstanding, around 12 per-
centage points higher than other methods, reaching scores of 81% and 71% on scans and
pseudoscans respectively.

Figure 5.11: Results of the current system on natural photographs compared to
participants from the ImageCLEF 2011 plant recognition task

On photographs, however, the SIFT+BoW descriptor alone does not excel, with a score of
15.5% but still outperforming most local feature based methods. The highest automated
classification score to outperform was 25.1%, achieved by the LIRIS group an their model-
based method, the IFSC/USP photographs having been manually segmented.
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In spite of the average results on photographs, looking at the general score of our sys-
tem and comparing it against the other ImageCLEF methods still shows a non negligible
advantage of 7 percentage points over the best submission with manual intervention -
IFSC/USP - and 16 percentage points over the best fully automatic submission - INRIA.

Figure 5.12: General score overview on the Pl@ntLeaves dataset

The general score plot has been recreated using the scores from the table shown in Section
2.2. We have also inserted our results for comparison, under the name of ”— Current
Project —”. We notice that these results are mainly based on very good scan-like image
classification, where our system clearly stands out from the rest. For final results and
in contrast to the training experiment, the bias correction actually improved our score by
approximately 5 percentage points. Analysing the output, we indeed find a few plants that
have many images with very high leaf shape variance at which classification fails. These
plants are the same as those noted in [GBJ+11] for having overall lowest recognition rates.

To better analyse the contribution of each descriptor and more specifically the importance
of local features for our final result, we look at the performance achieved by ART, FD,
SIFT individually, then fusing only shape features, then fusing with local features as well,
classified by Random Forests as well as 1NN. Late fusion ratios between ART and FD were
computed in an identical manner as in Section 5.3.1, on the training and validation subsets
of the training set. We thus find the optimal shape descriptor ratios for ART and FD only,
RatioART and RatioFD, to be (0.6,0.4) and (0.7,0.3) for RF and 1NN respectively.
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Figure 5.13: Overview of average rank 1 descriptor and classifier performance on the
Pl@ntLeaves scan and pseudoscan test sets

The most noticeable difference between the test results and those on the validation set is
that RF outperforms 1NN, showing better generalisation. The reason for this difference in
performance may come from the way we split the training data into training and validation
subsets. We did not take into account the user or the plant from which the images were
selected, having images from the same plant in both training and validation subsets. This
can introduce unwanted correlation between the two sets, which is not present between the
training and the testing set. This would also explain the fact that SIFT-only performed
very well on the validation test but poorly on the test set. When testing with the actual
test set, where some plants are restricted only to the test set, we have a better real-world
performance estimation. Late fusion also performs well as each new fused feature improves
precision by around 10 percentage points. Fusion of shape descriptors only, although not
as good as fusion of local and shape features, still provides better results than the best
scores on scans and pseudoscans from other methods, albeit by a smaller margin.
FD, the simplest descriptor we used shows surprisingly good performance by itself when
classified with RF. When comparing its performance to other systems from the ImageCLEF
2011, we notice indeed that it outperforms all of them in the average score on scan and
pseudoscans. This shows that although it is one of the oldest shape descriptors, when
combined with a strong classifier, it can offer very good results.

RF SIFT+ART+FD ART+FD FD ART SIFT

Scans 80.9 71.06 62.79 66.69 56.77
Pseudoscans 72.24 63.89 63.93 50.34 40.04

1NN SIFT+ART+FD ART+FD FD ART SIFT

Scans 78.23 62.71 50 44.22 50.30
Pseudoscans 73.82 63.34 55.74 49.64 35.85

Table 5.4: Average rank 1 descriptor and classifier performance on the Pl@ntLeaves scan
and pseudoscan test sets
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Figure 5.14: Overview of average rank 10 descriptor and classifier performance on the
Pl@ntLeaves scan and pseudoscan test sets

We also look at the rank 10 classification results, which show us that RF performs better
at finding relevant matches early. All shape descriptors and fused results have a 93% or
higher probability of correctly matching a leaf in the first 10 results. It is also interesting
to note that in the case of 1NN, fusion of shape descriptors with local features is actu-
ally detrimental for rank 10 performance, most probably because fusion parameters were
optimized on rank 1 results.

RF SIFT+ART+FD ART+FD FD ART SIFT

Scans 99.66 98.04 96.95 95.87 87.94
Pseudoscans 95.86 92.70 89.24 91.39 82.29

1NN SIFT+ART+FD ART+FD FD ART SIFT

Scans 93.73 97.31 95.12 96.01 83.96
Pseudoscans 89.31 92.13 86.63 88.08 79.07

Table 5.5: Average rank 10 descriptor and classifier performance on the Pl@ntLeaves
scan and pseudoscan test sets

70



5.4. Attribute selection and optimisations

5.4 Attribute selection and optimisations

Having analysed our system’s performance with large feature dimensionality and deter-
mined its advantage over the state-of-the-art, we now focus on its scalability. An efficient
system is not only important for portability to small devices, it also ensures that it is a
veritable solution for large databases. If our system were to be useful in a real-world appli-
cation, the datasets will become much larger than a few thousand images and a hundred
classes. In such context, it is important to optimise speed as much as possible, without
sacrificing recognition quality. Considering the algorithm for image segmentation requires
little processing power, we focus our optimisation task on speeding up feature extraction
and classification times. As mentioned in Sections 4.1.5 and 4.1.3, Random Forests train-
ing time, KNN testing time and ART’s feature extraction time, each grow linearly with
feature dimensionality. We thus apply the attribute selection methods described in Section
3.4.4 and analyse how much we can reduce the dimensions of the feature spaces without
sacrificing precision.

Using the exact setup we used in Section 5.3.3, we compare attribute importance as per-
ceived by RF and our defined discriminant function D(ai). All attribute importance
computations are done on the training set only.

Figure 5.15: Variable importance of FD and SIFT+BoW descriptors, as computed by RF
and D. SIFT+BoW was ordered by discriminance to better show correlation with RF

output. FD graph plots the square root of the variable importance for better readability.
Importance is on the vertical, attributes are on the horizontal axis.

We notice that the two importance measures show strong correlation, in the sense that
they often produce peaks on the same attributes, following the same trend. Because of
the noisy importance measures on SIFT+BoW, the attributes were ordered by descending
discriminance value for plotting, showing that this sorting also produces a descending
trend in the importance measured by RF. Interestingly, we observe a rise in importance of
higher frequency FD coefficients, that we attribute to the importance of edge detail in a leaf
(jagged, smooth, etc). We also note that many authors ([LJ08, AL09, YAT11, CFB11]),
when comparing their systems against FDs, only take the first 20-40 FD coefficients. While

71



5. Evaluation

these are indeed the most important, the above analysis shows that higher frequencies also
contain discriminative information for leaf classification.

Figure 5.16: ART coefficient importance as computed by RF and D plotted as grayscale
map of 15×30 radial and angular degrees as well as a function of descriptor attribute,

with importance on the vertical and attributes on the horizontal axis.

As was the case before, we notice strong correlation between the RF variable importance
computation and D. Analysing the grayscale maps, we also notice a trend line - shown
in green - in the important frequencies, which confirms the empirical rule of choosing
radial and angular degrees with a ratio of 1/2-1/4. The distribution of important bases
in the radial × angular maps also shows that when selecting a fixed number of degrees to
compute, many of the bases are unimportant, the majority being concentrated around the
trend line defined by a 1/4 ratio of radial to angular frequencies. Considering the strong
correlation between importance functions and the faster computation of D, we use D as
our main importance measure and analyse the effects of selecting features based on its
value.

We further look at how rank 1 and rank 10 precision varies in function of the number
of attributes selected. For good comparative plotting, FDs were recomputed with 512
coefficients and all the attribute selection count is stopped at 450 for all descriptors. The
score showed is bias corrected on the scan-type images from the test set. We chose only
scans because they are more statistically significant than pseudoscans (720 test images
versus only 180).
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Figure 5.17: Score of descriptors with RF as a function of number of attributes selected.

Although the plots manifest noise from bias corrections and randomness of the classifier,
we analyse the general trendline. We note the excellent scalability of ART and FD features,
50-100 discriminative coefficients being enough to obtain almost maximum precision. We
also notice that attribute selection is favorable for FD, where the non-important coefficients
add noise to the classification, lowering scores. SIFT+BoW however, does not present the
same amount of scalability, constantly improving on precision until the last attribute was
added. Selecting 100 SIFT+BoW attributes from 500 leads to 10 percentage points score
loss. Rank 10 results show that even 25 attributes for ART and FD each is enough to
obtain a score of 95%.

Figure 5.18: Score of descriptors with 1NN as a function of number of attributes selected.

Plots from the 1NN classifier show similar results, albeit at lower scores. We notice 1NN is
worse than RF at handling correct classification with a lower number of attributes. Rank
10 results however are somewhat closer to RF but still lower.

73



5. Evaluation

Execution times are now analysed and due to the fact that SIFT+BoW takes 1.2 seconds
in average to obtain features from an image and its bad scalability, we focus our attention
on optimising our shape descriptors: ART and FD. Comparing the precision obtained on
scan-like images using ART+FD with 50 selected attributes each and late fusion with our
previous best scores, we see little difference between the two:

Figure 5.19: Comparative score of system performance with selection of attributes and
without

At least concerning shape descriptors, we are able to reduce the dimensionality from 578
attributes to 100 with little, if any, precision loss. We now look at the actual computation
times of our system on a Intel Core i7-2600K Processor with a clock frequency of 3.5Ghz:

Attribute count: 50 150 450 50/N 150/N 450/N

Random Forest testing 0.7s 0.7s 0.7s 0.97ms ← idem ← idem
Random Forest training 30.7s 65.6s 202.9s 10ms 21.6ms 66.6ms
KNN testing 5.1s 7.2s 14.3s 7ms 10ms 19.8ms
FD extraction 37.7s ← idem ← idem 112ms ← idem ← idem
ART extraction 41.6s 106.8s 326s 126ms 325ms 1s

Method: K-means/N Derivative/N Otsu/N

Segmentation time per image: 110ms 50ms 63ms

Table 5.6: Execution times for different elements of our system on the Pl@antLeaves
dataset. Training has been done on the 3041 scans-like images, testing has been done on

the 721 scan images. Normalised scores represent processing time per image.

Results are obtained from single-core computation and can still be improved by paral-
lelisation of ART feature extraction, which is the most computational intensive task for
shape description. The run time of FDs can also be decreased by reducing the contour
resampling size. We notice that we can classify about 3 images per second with 50 ART
and 50 FD selected attributes. It is reasonable to assume that classification times will be
of the order of seconds on slower devices, still acceptable for our task. However, there are
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no efficiency benefits from reducing FD coefficients. The logarithmic and constant testing
complexity of RF is made obvious by the extremely low classification times. Training times
are also strongly reduced through attribute selection: if we were to consider that training
times of 5 hours or more are acceptable for real world applications, we could learn on a
database of millions of specimens, making RF a sustainable classifier for the plant identifi-
cation problem. It is notable that shape descriptors, while offering good performance, are
3 times as fast to compute as SIFT+BoW, which takes 1.2 seconds per image in average.
On a more powerful machine however, both shape and local features can be used, with
average recognition times of about 2 seconds. Nevertheless, most of the computation time
requirements for SIFT+BoW come from the DoG keypoint detector. If used with Harris or
MSER detectors, the feature extraction times improve ten-fold, taking 180ms per image,
much closer to the ART and FD extraction times. Unfortunately, using such keypoint
detection methods drastically decreases precision. A better keypoint detector or local fea-
ture altogether would further improve the ability of this system to scale, while offering
high precision results, as SIFT+BoW improves our matching scores by a non negligible 10
percentage points.
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In this work, an efficient image based automated plant recognition system is described as a
prototype for real-world applications. The plant identification task was modeled through
the use of shape and local features, with emphasis on shape descriptors, and classification
of these descriptors into plant species. Building upon already tested methods for plant
classification such as Fourier descriptors, Nearest Neighbour classifier and SIFT features,
we introduce the Angular Radial Transform as a new leaf shape feature as well as Random
Forests as a leaf feature classifier with good precision and generalisation properties. Local
features were used to complement shape information, proving their importance in the plant
identification problem. An optimisation scheme is proposed for efficient implementation
with minimal loss of classification quality, the resulting scalability of the system to both
slow devices and very large datasets being highlighted.

Starting from the most relevant leaf features used by botanists to identify leaves - gen-
eral shape, contour detail and texture, we have designed our system to use three general
descriptors to encode each respectively: ART, FD and SIFT+BoW. While designing our
system, we have compared individual descriptor performance, as well as descriptor fusion
results, and analysed the importance of each one. We have tested two classification meth-
ods: Nearest Neighbour, which is proven to be effective on a number of descriptors in
related works, as well as Random Forests which has not been mentioned in any previous
plant identification methods, while noting their computational complexities and real-world
usage advantages and disadvantages and declaring Random Forests as the better classifier.
The ranked classification scores were taken into account due to their usefulness for the
users of our system. Tests were done on the Pl@ntLeaves dataset in order to validate
system configuration choices on data originating from our target users. This was desired,
as images taken in highly controlled environments, such as the Plummers Island dataset
are not as representative for real-word use cases.

The results of comparisons with state-of-the-art methods are favorable for the system
presented in this work. We firstly compared our shape descriptors and Random Forest
classifier against the IDSC+DP method which was implemented in the first working pro-
totype of a real-world plant identification system. Our method outperformed IDSC on all
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datasets. The classification times we had were considerably better, as Random Forests
classifies in constant time while IDSC+DP does so in quadratic complexity. Results from
comparisons with methods from the ImageCLEF 2011 plant identification task also show
favorable scores for our shape features. Late fusion of ART and FD descriptors alone
outperforms the best results on both scan and pseudoscan images from other methods,
however by a small margin. The introduction of SIFT+BoW features and fusion with
shape features significantly improves the score on these images, boosting results to a 13
percentage point margin between our system and the next best on scan-like images. Tests
on unconstrained photographs of leaves and entire plants from Pl@ntLeaves were per-
formed using SIFT+BoW only, as segmentation of leaves on such diverse backgrounds
proved unfeasible. Results were averaged, achieving a score of 15.5%, 10 percentage points
lower than the best fully automated method from the LIRIS group. Ranked classification
was computed, showing that on scan-like images we produce rank 10 classification scores
over 90% on all datasets, including the 203-class Plummers Island. It was noted that
on ImageCLEF scan-like datasets, rank 10 scores were over 90% with shape descriptors,
regardless of classifier or descriptor, however Random Forests proved to provide higher
scores starting from lower classification ranks. If speed is of the essence and a user would
not be bothered by finding the correct match in the first few results and not necessarily the
first, even FDs with RF only offer good enough performance for useful plant identification.

Optimisation of the system based on feature dimensionality reduction through important
attribute selection has been described. We noted ART to be the main computational
intensive shape descriptor and proposed a method of reducing its computational time
without noticeable loss of system precision. After optimisation, ART extracts features at
a rate of 126ms per image, very close to the 112ms for FD. By reducing feature vector
dimensions, the system is able to segment, extract features and classify samples at an
average rate of 3 frames per second. We have equally analysed classifier performance and
highlighted the excellent scalability of the Random Forests classifier on very large datasets,
which are probable to develop when automated plant identification will become a standard
tool for botanists or even a crowdsourced application.

Notable directions of improvement for the current work are in unconstrained photograph
classification where our method did not excel. However, even other methods presented at
ImageCLEF 2011 achieve a maximum score of 25.1%, which is too low to be practical for
real-world use. Improving on local features for plant recognition will represent a major
breakthrough, making the technology maturer and more usable by a larger target pub-
lic. Speeding up the local feature extraction process is also another important research
direction as it is currently the slowest of all the descriptors used in this work, making
it unusable on slow portable devices. A system capable of recognising plants from the
video-feed of a cell phone’s camera and overlaying plant species around detected leaves
would represent an interesting augumented reality system, possible with faster and more
precise local feature extraction.

Reviewing our work, we have presented an efficient automated plant recognition system,
based on both shape and local features and the Random Forests classifier. We have used
the ART descriptor as a new leaf shape feature and optimised its implementation. The
proposed system outperforms state-of-the-art methods for scan-like leaf image based plant
recognition while showing fast computational times and high scalability potential.
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