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Abstract
Face alignment using deformable face model has attracted broad interest in recent

years for its wide range of applications in facial analysis. Previous work has shown
that discriminative deformable models have better generalization capacity compared to
generative models [8, 9]. In this paper, we present a new discriminative face model
based on boosting pseudo census transform features. This feature is considered to be less
sensitive to illumination changes, which yields a more robust alignment algorithm. The
alignment is based on maximizing the scores of boosted strong classifier, which indicate
whether the current alignment is a correct or incorrect one. The proposed approach has
been evaluated extensively on several databases. The experimental results show that our
approach generalizes better on unseen data compared to the Haar feature-based approach.
Moreover, its training procedure is much faster due to the low dimensionality of the
configuration space of the proposed feature.

1 Introduction
Deformable face model fitting is essentially an image registration problem. After defor-
mation, the facial features in a face image are aligned with the model. Numerous works
have been conducted to solve the face alignment problem, on account of its importance in
a wide range of applications, such as analysis of expression, pose, gender, age, and identity
of human faces. Nevertheless, it remains to be a challenging problem in the computer vi-
sion community due to the variation factors such as illumination, expression, occlusion and
image quality. These factors make it difficult for face models to generalize to unseen data.

One of the early face alignment approaches using a deformable face model is the Active
Shape Model (ASM) [2], where the model fits to the data in a way consistent with a training
set. There are several extension of the ASM. One noticeable work is the Bayesian formu-
lation of the ASM [15], where a Bayesian inference solution and an expectation maximiza-
tion (EM) based method is used for estimating the maximum a posteriori probability (MAP).

Another popular extension of the ASM is the Active Appearance Model (AAM) [3, 10],
in which the appearance of the face is also considered. The model combines constraints
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on both shape and texture by learning statistical generative models for the shape of a face
and the appearance of a face. Shape is represented by landmark positions (see Figure 1
(b)), whereas the appearance is represented by pixel intensities in the shape-free face image
(see Figure 1 (c)). The fitting of the AAM is defined by solving a least mean square error
(LMSE) problem, where difference between the warped image and the model appearance
is minimized. Efficient optimization algorithms such as the Inverse Compositional (IC) and
Simultaneously Inverse Compositional (SIC) methods have been proposed by Baker and
Matthews [1], which enable fast face alignment for real-time applications. However, the
alignment performance degrades quickly when generic AAMs are trained instead of person
specific AAMs [6]. The generalization issue is caused by generative appearance modeling
and the LMSE optimization schema as claimed in [8].

In order to tackle this generalization problem, Liu proposed the Boosted Appearance
Model (BAM) [8], in which a shape representation similar to the AAM is used, whereas
the appearance is represented by a set of discriminative features, trained to form a boosted
classifier. The discriminative appearance models is able to distinguish between correct and
incorrect alignment. The BAM fitting can be done by iteratively updating the landmark
positions according to gradient ascent on the corresponding classifier score function. It has
been shown that the BAM improves the generalization capabilities of the AAM.

However, as we know that the number of Haar features to be boosted is extremly large
since the dimension of the parameter space is high. Training a BAM using Haar features re-
quires to boost more than one hundred thousand rectangular features within the mean shape,
which results in a very inefficient training procedure. To avoid this, we propose to use a
local feature with less configurable parameters for boosting, which enables the training pro-
cedure extremely fast. The local feature is inspired by the work of Fröba et al. [5], in which
the modified census transformation (MCT) is applied for face detection. The face detector
based on the MCT feature yields better detection performance in addition to its fast train-
ing and detection speed compared to the state-of-the-art approach [14]. The MCT feature,
however, is a binarized pattern which is not suitable for deriving an analytical optimization
algorithm. In this work, we used the unbinarized census transform feature, which we call
pseudo census transform (PCT). The PCT feature is projected discriminatively to a scalar in-
dicating the correctness of face alignment. We boost the scalar values using GentleBoost [4].
Multi-scale PCT features are also investigated. We evaluated our PCT-based BAM fitting on
four different datasets. Our proposed approach achieved slightly better performance on seen
data compared to the Haar-based BAM. However, results on the unseen data showed that
the PCT-based BAM outperforms the Haar-based BAM significantly in terms of the Aver-
age Frequency of Convergence (AFC), which indicates that our approach generizes better on
unseen data.

The rest of the paper is organized as follows. We present our discriminative appearance
model using pseudo census transformation in detail in Section 2. The algorithm for fitting
our proposed face model is presented in Section 3. The experimental setup and results will
be discussed in Section 4, and we conclude with future work in Section 5.

2 Face Model

Generative face models, such as the AAMs, are usally represented by the combination of
a generative appearance and shape model. In contrast, we introduce a discriminative face
model in this section, in which the appearance is represented with a set of boosted discrim-
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(a) (b) (c)
Figure 1: Shape model and warping function. (a) The mean shape s0. (b) The face image
superimposed with a shape s(p). (c) The face image warped to the mean shape I(W(x;p)).

inative features. The following subsections describe the features we used and the details of
feature selection for face alignment.

2.1 Shape Model
We use a generative shape model to describe the distribution of the shape of faces. The
shape of a face is represented by a set of l 2D-landmarks, defined by their image coordinates
xi = (xi,yi)i=1,...,l . The coordinates of the landmarks are stacked to form the shape vector
s = [x1,y1,x2,y2, . . . ,xl ,yl ]

>. Assuming the face shapes lie in a linear subspace, we represent
a novel shape s with a linear combination of shape basis:

s = s0 +Σ
n
i=1 pisi, (1)

where s0 is the mean shape, si is the i-th shape basis, and p = [p1, p2, . . . , pn]
> is the shape

parameter. The mean shape and the shape basis can be learned from a labeled training set
of face images via Principal Component Analysis (PCA). This model is known as the point
distribution models which has been used in many of previous works [2, 3, 10].

With Delauney triangulation, the mean shape s0 (Figure 1 (a)) and the shape s (Figure 1
(b)) are triangulated to a base mesh and an instance face mesh. A non-linear mapping func-
tion W(x;p) is defined with a piece-wise affine warping, which maps pixel x defined in the
instance shape to the mean shape. A shape-free image I(W(x;p)) (Figure 1(c)) is obtained
by warping a face image I to the coordinate of the mean shape.

2.2 Appearance Model
The appearance model is a collection of m features computed over the shape-free face im-
age I(W(x;p)). In [8], the rectangular Haar features were adopted. Haar features are know
as good local features for general object detection [14]. One drawback of the Haar fea-
tures is that the configuration space is extremely large, which makes the selection procedure
very slow. In [5], Fröba et al. found out that the feature extracted by the modified census
transformation (MCT) outperforms the Haar features in face detection, and especially, due
to the small configuration space of the MCT feature, the detector can be trained very fast.
Inspired by their work, we propose to select the unbinarized census transform (which we
call pseudo census tranform (PCT)) feature for our appearance model 1. The PCT feature
ϕ = (ϕ1, . . . ,ϕK)

> is a K dimensional vector which contains the pixel values in a
√

K×
√

K
neighborhood centered at x = (r,c), and subtracted with local mean. For simplicity, we used

1The MCT features can not be applied for deriving the fitting algorithm since it is a binary pattern.
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(a) (b) (c)
Figure 2: (a) The parametrization of a weak classifier, i.e. center of the PCT filter positioned
at (r,c); (b) K PCT filter masks (K = 9), the top left filter mask correspond to the filter kernel
defined in Equation (2); (c) PCT-filter responses of a shape-free image.

a fixed K (K = 9) in this work. The PCT feature ϕ is then obtained by ordering the K filter
responses of a filter bank plotted in Figure 2(b) at a specific position (r,c). The mask of the
first filter can be defined as follows:

T0 =

 8/9 −1/9 −1/9
−1/9 −1/9 −1/9
−1/9 −1/9 −1/9

 (2)

The rest of the filter masks can be defined accordingly by shifting the position of the value
8/9 in the matrix (see Figure 2 (b), white corresponds to the positive element and gray
corresponds to the negative elements). Note that the responses of the filters are equivalent
to the PCT feature values. This enables us to define K image templates Ai=1,...,K with the
filter mask placed at position x = (r,c) for one PCT feature. The inner product between the
template and the warped image is equivalent to computing the filter responses:

ϕi = A>i I(W(x;p)) = Ti ∗ I(W(x;p)), i = 1, . . . ,K. (3)

2.3 Learning Alignment
We formulate the problem of learning an alignment score function to perform the fitting of
the face model in this section. More precisely, for a given image, let us suppose that p is
the shape parameter that represents the current alignment of the shape model, with the face
in the image: We are interested in learning from data a score function F , such that, when
maximized with respect to p, it will return the shape parameter corresponding to the correct
alignment. Mathematically, if p∗ is the shape parameter representing the correct alignment,
F has to be such that

p∗ = argmax
p

F(p) (4)

With this formulation, the appearance model is actually a two-class classifier. In particular,
we use a linear combination of several PCT features to define the appearance model:

F(I(W(x;p))) = Σ
M
m=1 fm(I(W(x;p))) (5)

where fm(I(W(x;p))) is a function operating on one PCT feature of I(W(x;p)). Given this
formulation of the appearance model, machine learning tools such as boosting become a
natural choice to learn such a model. Note that fm(I(W(x;p))) in (5) can be viewed as a
weak classifier operating on I(W(x;p)). For simplification of the notation, we will denote
the weak classifier and the strong classifier as fm(p) and F(p) respectively.
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(a) (b) (c)
Figure 3: Boosted PCT feature locations. (a) Boosted PCT feature locations in PCT-BAM,
(b) Boosted PCT feature locations in the original scale in MSPCT-BAM, (c) Boosted PCT
feature locations in the half scale in MSPCT-BAM.

Our weak classifier using the PCT features is defined as follows:

fm(p) =
π

2
atan(ΣK

i=1wm
i S(Am>

i I(W(x;p)))+bm), (6)

where Am
i is the i-th template defined at the m-th position (rm,cm). Since the classifier

response fm(p) is continuous within −1 and 1, the atan() function is used to ensure both
discriminability and derivability. S(•) is a sigmoid function defined as S(t) = 1

1+e−αt , where
α is a scale parameter. The sigmoid function normalizes the raw PCT feature values into a
range of (0,1) before a linear projection. The projection vector wm and bias bm are learned
on the training data with linear support vector machines (SVM). The individual SVM cost
parameter C for each feature location is searched with cross validation.

The GentleBoost algorithm [4] is used to boost the weak classifiers as suggested in [8]
for two reasons. On one hand, it is a soft classfier with continuous output which enables us to
derive gradient ascent algorithm for maximizing the strong classifier function. On the other
hand, the GentleBoost outperforms other boosting algorihms since it is more robust against
noisy data. Figure 3(a) plots the top 40 locations of the boosted features overlaid on a 30×30
mask image. The gray pixels inside the mask indicates the location of the boosted feature.
Note that the boosted PCT features are mainly located around the natural facial features, i.e.
the eyes, nose and mouth region. The features extracted at those locations contribute the
most to the face alignment.

The PCT features extracted on the images at different scales 2− j might contribute addi-
tional discriminative information for face alignment, where j is the level index in a multi-
scale image pyramid. We also boost PCT features on different scales ( j = 0,1,2,3) of the
shape-free images. The location of the boosted features in the original scale ( j = 0) and the
half scaled image ( j = 1) are displayed in Figure 3(b) and (c) respectively. These feature
locations are boosted together with all scales. We found that actually there are no features
boosted at the scale level 2 and 3, because the images are too small to obtain useful fea-
tures. Hereafter, we refer to the single scale face model as PCT-BAM (PCT-based boosted
appearance model) and the multiple scale face model as MSPCT-BAM.

3 Face Alignment
In order to align a PCT-BAM with the face in a given image I, we assume that the model
is currently aligned with a shape parameter p (at the i-th iteration). In order to achieve the
optimal alignment one may perform a simple gradient ascent on the score function F , and
therefore update the shape parameter as follows

p = p+ν
dF
dp

, (7)
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where ν is a suitable constant. From (3), (5), and (6) one can see that the derivative of F
with respect to p is

dF
dp

=
2
π

Σ
M
m=1

αΣK
i=1wm

i S(ϕm
i )S(1−ϕm

i )[∇I ∂W
∂p ]>Am

i

1+[ΣK
i=1wiS(ϕm

i )+bm]2
, (8)

where ∇I is the gradient of the image evaluated at W(x;p), and ∂W
∂p is the Jacobian of the

warp evaluated at p. The detailed fitting steps is summarized in Algorithm 1.

Algorithm 1 The face alignment algorithm of PCT-BAM
Input:

Input image I, initial shape parameters p, pre-computed Jacobian ∂W
∂p , the shape model

{si; i = 0,1, . . . ,n} and the appearance model.
Output:

Shape parameters p.
0. Compute the 2D gradient of the image I.
repeat

1: Compute I(W(x;p)) by warping image I with W(x;p).
2: For each weak classifier compute the feature: em = ΣK

i=1wiS(ϕm
i )+bm;m = 1,2, . . . ,M.

3: Interpolate the gradient of image I at W(x;p) with bilinear interpolation.
4: Compute the steepest descent images SD = ∇I ∂W

∂p .
5: Compute the PCT feature from each column of SD and project with wm: dm =

αΣK
i=1wm

i S(ϕm
i )S(1−ϕm

i )[∇I ∂W
∂p ]>Am

i ;m = 1,2, . . . ,M.

6: Compute ∆p using ∆p = ν
2
π

ΣM
m=1

dm
1+e2

m
.

7: Update p = p+∆p.
until ‖Σn

i=1∆psi‖ ≤ τ .

4 Experiments

4.1 Evaluation Dataset and Procedure
The dataset for evaluation in this work contains 1529 images. These images are collected
from multiple publicly available databases, including the FRGC v2.0 database [12], the
FERET database [11], the IMM database [13], and the Labeled Faces in the Wild (LFW)
database [7]. Figure 4 shows sample images from these four databases. The collected im-
ages are partitioned distinctively into four subsets. Set 1 includes 400 images (one image
per subject), where 200 images are from the FRGC database and the other 200 images are
from the FERET database. Set 1 is used as the training set. Set 2 includes 389 images from
the same subjects but different images as the FRGC database in Set 1. Set 3 includes 240
images from 40 subjects in the IMM database that were never used in the training. Set 4
includes randomly selected 500 images of 500 subjects from the LFW database. This parti-
tion ensures that we have two levels of generalization to be tested, i.e., Set 2 is tested as the
unseen data of seen subjects; Set 3 and 4 are tested as the unseen data of unseen subjects.
Set 4 is a particular challenging dataset since it is collected from the Internet. The images
were captured under cluttered background and various real-world illumination environments
using different types of cameras. There are 58 manually labeled landmarks for each of the
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(a) (b) (c) (d)
Figure 4: Example of the face dataset: (a) FRGC v2.0 database, (b) FERET database, (c)
IMM database, and (d) LFW database.

1529 images. The images are down-sampled such that the facial width is roughly 40 pixels
across the set in order to speed up the training process.

We compare our proposed PCT-BAM and MSPCT-BAM to the Haar feature-based BAM
(Haar-BAM). We do not compare our model against AAM-based methods, as it has been
shown in [8] that the Haar-BAM outperforms them. We train the two models with Set 1 by
taking the shape-free images extracted with ground truth landmarks at the positive samples,
and the negative samples are generated by perturbing the shape parameter of the ground
truth shapes uniformly in a range of the corresponding eigenvalues. We generate 10 negative
samples for each image and resulting 4000 negative samples in total. The shape model has 15
shape bases and it is the same for all the models which preserve 95% of shape varations. We
use the same mean shape size as in [8], that means the size of shape-free images is 30×30
pixels. The resulting appearance models are such that the MSPCT-BAM and the Haar-BAM
have 50 weak classifiers, and the single scale PCT-BAM has 43 weak classifiers, as it can
only boost 43 weak classifiers on Set 1.

The false alarm rate (FAR) of the strong classifiers of the three models are plotted in
Figure 5. The FAR is plotted as a function of the number of weak classifiers, when the
miss-detection rate on the training set is set to 0%. The plot shows that both PCT-based
models converge faster than the Haar-BAM. In particluar, for 50 weak classifiers the FAR’s
of MSPCT-BAM and Haar-BAM are 1.12% and 5.47%, respectively.

A faster convergence means that it is less likely to have local maximum on a classification
score surface. Figure 6(a) shows that for a given image, a concave surface of classification
scores can be observed while perturbing the shape parameters along two shape bases. The
concavity property of the score surface ensures that the gradient ascent algorithm can per-
form well. The perturbation range is set to be 1.6 times the eigenvalue of these two bases.
When the perturbation is at the maximal amount for two bases, the corresponding four per-
turbed landmarks are plotted at Figure 6(b). To see the properties of score surfaces, more
surfaces are plotted as images in Figure 6(c), where the intensity corresponds to the classifi-
cation score. Each sub-image is generated in the same way as Figure 6(a). For most cases,
we see the intensity changes from high to low when the pixel deviates from the center, i.e.,
the alignment gets less accurate. This monotonic surface is important for a successful face
alignment algorithm.

4.2 Experimental Results
In the evaluation, we use the randomly perturbed ground truth landmarks to initialize each
alignment. In order to perform a statistical evaluation of the result, we repeat the random
perturbation multiple times on each test image. The initial position of the landmarks is
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Figure 5: False alarm rate of the strong classifiers when the miss-detection rate on the train-
ing set is set to 0%.
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Figure 6: (a) The classification score surface while perturbing the shape parameters in the
neighborhood of the ground truth along the 4th and 5th shape basis. (b) The four perturbed
facial landmarks when the perturbation is at the four corners of the surface on the left. (c)
The classification score surface of 5 facial images (one by each column) while perturbing the
shape parameters along pairs of shape bases (from top to bottom (p1, p2), (p2, p3), (p3, p4),
(p4, p5),(p5, p6)).

generated by perturbing the shape parameter with independent Gaussian noise with variances
multiple of the corresponding eigenvalues. We consider as converged if the Root Mean
Square Error (RMSE) between the aligned landmarks and the ground truth is less than one
pixel. For the converged trails, we use two metrics to measure the robustness and accuracy of
the alignment. The Average Frequency of Convergence (AFC) which assesses the robustness
of the alignment is calculated as the number of converged trials divided by the total number
of trials. The second metric is the histogram of the RMSE (HRMSE) of the converged trials,
which measures how close the aligned landmarks are to the ground truth.

The evaluation of PCT-BAM, MSPCT-BAM and Haar-BAM is conducted under the same
conditions. All algorithms are initialized with the same set of randomly perturbed landmarks.
All algorithms have the same constant ν in Equation 7, and also the same termination condi-
tion. That is, if the number of iterations is larger than 55 or the RMSE between consecutive
iterations is less than 0.025 pixels. Figure 7 plots the AFC of the PCT-BAM, MSPCT-BAM
and Haar-BAM against the level of the initial landmarks perturbation, computed over Set 1,
2, 3, and 4, respectively. For each perturbation value, we randomly perturb each image of
each set five times.

The AFC plots in Figure 7 show that MSPCT-BAM based alignment achieved com-
parable results on the seen data (Set 1 and 2). The robustness of the MSPCT-BAM based
alignment is slightly better than Haar-BAM based alignment with increasing perturbing vari-
ance. However, in the experiments on unseen data (Set 3 and 4), PCT-based (both PCT-BAM
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Figure 7: Alignment results of three algorithms on Set 1, 2, 3, and 4. From top to bottom,
each row is the result for one set. Left column is the AFC; right column is the HRMSE.

and MSPCT-BAM) alignment outperforms the Haar-BAM-based alignment significantly as
plotted on the third and fourth row in Figure 7. On Set 3, 95% of the perturbed samples with
a perturbation range of 0.2 times the shape eigenvalue converge in the PCT-BAM fitting,
while the convergence rate of Haar-BAM is 88%. When the perturbation range increases
to 1.6 times the shape eigenvalue, the AFC value of MSPCT-BAM is 9% higher than Haar-
BAM. On the most challenging testing set (Set 4), in which the imaging conditions are
totally different from each other, the performance of both algorithms degrades a lot. How-
ever, the performance drop of PCT-BAM (17%) is less than that of Haar-BAM (23%) at the
first perturbation index. Additional PCT features selected on other scales also improve the
robustness of aligment with large perturbation as can be observed consistently through all
the experiments. The accuracies of the two methods are comparable as we can see from the
HRMSE plots. (MS)PCT-BAM is slightly superior to Haar-BAM again on the unseen data as
displayed in Figure 7. Overall, our PCT-based alignment has better generalization capability
than the Haar-BAM-based alignment.

The reason for the performance gain on unseen data is probably because the responses
of the PCT filter are somewhat similar to the Laplacian filter, which is a highpass filter. The
3× 3 filter mask in the center of Figure 2(b) is indeed a discretized Laplacian filter. And
these filter responses are less sensitive to illumination changes, which make the PCT-based
approach generalize better on unseen data with mismatched illumination conditions.
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5 Conclusions
We have introduced the pseudo census transformation-based boosted appearance model (PCT-
BAM), a new discriminative appearance model suitable to perform face alignment. The
adopted PCT feature has much less parameters to be boosted which enables extremely fast
model training compared to the training procedure of the Haar-BAM. We compared the
proposed PCT-based alignment to the Haar-BAM on seen data and unseen data. Our exper-
imental results on seen data are comparably better. However, our PCT-BAM model shows
significant performance improvement on unseen data, which means the proposed model has
better generalization properties on unseen data. Additional PCT features selected on other
scales also improve the robustness of alignment with large perturbation as can be observed
consistently through all the experiments. As future work, PCT features on different scales
can be boosted separately to enable hierarchical alignment.
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