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Abstract

In the last decade, facial expression recognition has attracted more and more inter-
est of researchers in the computer vision community. Facial expressions are a form
of nonverbal communication, used to exchange social and emotional information
in human-human-interaction. By detecting the expression of a human and react-
ing proactively, many applications could benefit from automatic facial expression
recognition systems, e.g. human-computer-interfaces or security systems. Further
applications for expression recognition lie in driver safety and social sciences. In
order to use facial expression recognition systems in real-world situations, it is es-
sential to recognize expressions not only from frontal face images, but also from
images containing faces with pose variations. Furthermore, facial landmarks have to
be located automatically in order to use local appearance features for representing
the face.
In this work, a multi-view facial expression recognition system based on Active Ap-
pearance Models (AAMs) is established, which automatically finds facial landmark
points by fitting a pose-dependent AAM to the input face image. Different fea-
tures are extracted from the AAM, and appearance descriptors are computed at
the located facial feature points using Scale-Invariant Feature Transform (SIFT)
and Discrete Cosine Transform (DCT). On these features, feature selection is per-
formed using the F-score feature selection method. The resulting feature vectors are
then used for training pose-dependent linear multi-class Support Vector Machine
(SVM) classifiers, which recognize six different expression classes for 13 different
poses (frontal + six left + six right). Extensive experiments are performed on the
BU-3DFE database to evaluate the expression recognition system. Recognition rates
are measured for single feature types as well as for combinations of features. Results
show, that a combination of DCT features and normalized landmark coordinates,
extracted from the fitted AAM, achieves the highest recognition accuracy. Recog-
nition rates for appearance features extracted at automatically located landmarks
are compared to those of appearance features extracted at groundtruth landmarks.
The influence of the intensity level of expressions on recognition accuracy is also
explored.





Kurzzusammenfassung

In den letzten Jahren ist das Interesse von Forschungsgruppen im Bereich des Maschi-
nensehens an automatischen Systemen zur Erkennung von Gesichtsausdrücken stetig
gestiegen. Gesichtsausdrücke sind eine Form der nonverbalen Kommunikation, mit
deren Hilfe soziale und emotionale Informationen zwischen Menschen ausgetauscht
werden. Viele Anwendungen können von automatischen Gesichtsausdruckserken-
nungssystemen profitieren, indem sie auf die erkannten Gesichtsausdrücke proaktiv
reagieren, z.B. Mensch-Maschine-Schnittstellen oder Überwachungssysteme. Weit-
ere Anwendungsmöglichkeiten liegen in Fahrsicherheitssystemen oder den Sozialwis-
senschaften. Wenn solche Erkennungssysteme in realen Situationen verwendet wer-
den sollen, ist es notwendig die Ausdrücke nicht nur auf Gesichtsbildern aus frontaler
Ansicht zu erkennen, sondern auch auf Bildern aus anderen Blickwinkeln. Außerdem
müssen die charakteristischen Gesichtspunkte automatisch gefunden werden, wenn
lokale Bildmerkmale zur Repräsentation des Gesichtes benutzt werden sollen.
In dieser Arbeit wird ein System zur Erkennung von Gesichtsausdrücken aus ver-
schiedenen Blickwinkeln entwickelt. Durch das Anpassen eines posenabhängigen
Active Appearance Models (AAMs) an ein gegebenes Gesichtsbild werden charak-
teristische Gesichtspunkte automatisch lokalisiert. Aus dem AAM werden dann
unterschiedliche Merkmale extrahiert und Bildmerkmale werden an den gefundenen
Gesichtspunkten berechnet. Dazu werden Verfahren der skaleninvarianten Merkmal-
stransformation (SIFT) und der Diskreten Kosinustransformation (DCT) verwendet.
Dann wird auf die Merkmalsvektoren das F-score Merkmalsauswahlverfahren ange-
wandt. Mit den resultierenden Vektoren werden posenabhängige lineare multiklassen
Support Vector Machines (SVM) trainiert, welche sechs Gesichtsausdrücke aus ins-
gesamt 13 verschiedenen Blickwinkeln erkennen.
Umfassende Experimente werden auf der BU-3DFE Datenbank zur Evaluation des
Gesichtsausdruckserkennungssystems durchgeführt. Die Erkennungsraten werden
sowohl für einzelne Merkmalstypen, als auch für Kombinationen von Merkmalstypen
gemessen. Ergebnisse zeigen, dass eine Kombination von DCT-Merkmalen und nor-
malisierten Gesichtspunktkoordinaten, welche aus dem eingepassten AAM extrahiert
wurden, die höchste Erkennungsrate erzielt. Die Erkennungsraten von Bildmerk-
malen, welche an automatisch lokalisierten Gesichtspunkten berechnet wurden, wer-
den mit denen von Merkmalen, welche an von Hand markierten Gesichtspunkten
extrahiert wurden, verglichen. Zudem wird der Einfluss der Intensität der Gesichts-
ausdrücke auf die Klassifizierungsergebnisse untersucht.
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1. Introduction

Over the last years, automatic facial expression recognition systems have become a
more and more important field of research in the computer vision community. A big
part of human communication is done through facial expressions. By interpreting the
expression of the face, one can tell the emotional state of another person much faster
than by using words. Consequently, automatic facial expression recognition systems
can lead to big improvements in human-centered human-machine interaction, so
that in the future, robots/machines can understand human behaviour and react
proactively. Further applications lie in security, driver safety and social sciences as
a tool to analyse human affective behavior.

Facial expression recognition uses visual information to divide facial motion and
facial feature deformations into different abstract classes. Misleadingly, the term
emotion recognition is often used as a synonym for expression recognition. Opposed
to expression recognition, emotion recognition is an attempt to interpret facial ex-
pressions, but emotions are influenced by many factors, and are not necessarily
displayed through facial expressions. Ekman and Friesen [1] introduce 6 basic emo-
tions, i.e. anger, disgust, fear, happiness, sadness and surprise, “that possess each a
distinctive content together with a unique facial expression”. These basic emotions
are often used in facial expression recognition systems as expression classes and are
usually called prototypic or basic expressions. When creating a database using these
6 classes, the problem appears, that persons performing the different expressions
have different understandings of how a certain expression should look, which leads
to different results for the same classes. Therefore, the data has to be labelled by
human experts afterwards to ensure the consistency of classes.

Opposed to the approach of recognizing complete expressions, there is a widely used
system available called FACS (facial action coding system [2]) for detecting so called
action units (AUs). This approach is solely based on appearance and does not try to
interpret facial deformations. Activity of facial muscles or muscle groups and their
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1. Introduction

intensities are measured and assigned to different predetermined AU classes. These
classes can be divided into upper and lower face action units, with upper face AUs
concentrating on eyes, their surrounding areas and eyebrows, while lower face AUs
focus on deformations of mouth and cheeks.

Automatic facial expression analysis is a challenging task, as there are many factors
that can make the same expression look very different. Changes in age, ethnicity,
gender and facial hair will have a big influence on classification results, but even
when the shown person is the same, occlusions or pose and lighting variations can
cause big problems.

1.1 Motivation

Most existing facial expression recognition systems only work well on near-frontal
faces. For using an automatic facial expression recognition system in real-world
environments, the capability of dealing with non-frontal poses is essential. With the
creation of a new 3D facial expression database [3], the number of multi-view facial
expression recognition systems has grown. Many of these systems utilize hand-
labelled points for feature extraction [4, 5, 6, 7, 8, 9, 10], which is not an option
for application in real-world situations. Another drawback is the fact that in most
systems only 5 poses are considered for expression recognition. Hence, in this thesis
a system is developed which automatically extracts facial feature points from a given
input image and recognizes facial expressions for 13 poses.

1.2 Goals

The goal of this thesis is to establish an automatic multi-view facial expression
recognition system that works well in real world situations. Therefore, it has to be
able to process images containing faces at arbitrary view angles up to profile view.
The face must be found and the locations of the facial feature points have to be
extracted automatically. A numerical representation of an expressive face has to be
established, in order to distinguish between the different expression classes. Also,
classifiers have to be trained to output the recognized expression in the end.

Since the appearance and shape of a face vary if the view angle changes, it is not suf-
ficient to model faces from different poses by one model only. Hence, pose-dependent
models will be used for describing shape and appearance of a face for each pose seper-
ately. Consequentially, one expression classifier is built for each pose to recognize
six basic expressions, namely anger, disgust, fear, happiness, sadness and surprise.

1.3 Thesis overview

In this work, a multi-view expression recognition system is built, which receives a
2D image containing a face as input. After performing pose estimation and face
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1.3. Thesis overview

detection, a pre-trained pose-dependent Active Appearance Model (AAM) [11] is
fitted to the input face. Several features are extracted from the AAM: shape and
appearance parameters, and facial landmark points on which appearance descrip-
tors, namely Scale-Invariant Feature Transform (SIFT) [12] and Discrete Cosine
Transform (DCT) [13], are computed. Afterwards, feature selection is performed
on the feature vector containing the extracted features in order to reduce the di-
mensionality and to improve the learnability. This feature vector is then fed to the
previously trained pose-dependent multi-class Support Vector Machine (SVM) [14],
which finally outputs the recognized expression class.

For creating the system described above, pose-dependent AAMs and pose-dependent
SVMs have to be trained. Pose-dependent means, that for each pose one AAM/SVM
is trained. After the pose of the input face is determined, the corresponding AAM,
respectively SVM, is selected for further process. In this thesis, the view angle varies
between -90 and +90 degrees for horizontal head-rotation with steps of 15 degrees,
which results in 13 AAMs and 13 SVMs.

For validating the proposed system, experiments are conducted on the BU-3DFE
database [3]. Recognition results are produced for different kinds of features, e.g.
shape features extracted from the fitted AAM or appearance features computed at
facial landmark points. It is investigated if combining shape and appearance features
can improve recognition accuracy, and classification results for appearance features
extracted at automatically selected landmarks are compared to results based on
groundtruth landmarks.

The remainder of this thesis is organized as follows. First, an overview of existing
facial expression recognition systems is given in section 2. In section 3, the theoretical
backgrounds for the methods and algorithms used in this thesis are presented. Then,
the facial expression recognition system developed in this thesis is introduced in
section 4, which afterwards is evaluated through extensive experiments (section 5).
Finally, in section 6, conclusions are drawn.
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2. Related work

A wide variety of approaches to facial expression recognition exists. In this sec-
tion, an overview of several state-of-the-art systems is given, which are divided into
following categories:

� Facial expression recognition based on geometry of facial features

� Appearance-based facial expression recognition

� Model-based facial expression recognition

� Multi-view facial expression recognition.

2.1 Facial expression recognition based on geome-

try of facial features

When using geometric features for expression recognition, classification is based on
locations of facial landmark points and distances between them. Therefore, land-
mark coordinates have to be labelled by hand or extracted automatically from the
input image.

Tang and Huang present a facial expression recognition approach based on prop-
erties of line segments in [15]. Features for expression classification are normalized
distances and slopes of facial features, which are computed from 3D facial land-
mark points. From each face, 96 features are extracted and used for recognizing
six expression classes, namely anger, disgust, fear, happiness, sadness and surprise.
Experiments on the BU-3DFE database using groundtruth landmark points show
an average recognition accuracy of 87,1% using multi-class SVM classifiers.

In a similar approach in [16], the same authors use distances between facial landmark
points for classification. This time, two types of feature selection are performed on
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2. Related work

these features. First, human experts select 24 features, which they consider relevant,
by hand. The second method is an automatic feature selection, maximizing “the av-
erage relative entropy of marginalized class-conditional feature distributions”, which
means, that distances between all possible pairs of landmark points are considered,
and those with the biggest discrimination power are selected. On the automatically
selected feature vector, Principal Component Analysis (PCA) is performed. Then,
vectors obtained from both methods are fed to an AdaBoost classifier with different
weak classifiers (Nearest Neighbor (NN), Naive Bayes (NB) and Linear Discriminant
Analysis (LDA)). For experiments, data of 60 subjects is taken from the BU-3DFE
database, half of which are female and the other half are male. For each of these 60
subjects, the corresponding neutral face features are subtracted from the expression
face features as a preprocessing step. 54 subjects are used for training the classifiers
and 6 for testing. Using the manually selected features, recognition rates are as
following: 93.6% (NN), 93.8% (NB), and 91.8% (LDA), while for automatically se-
lected features recognition accuracies of 94.8% (NN), 90.8% (NB), and 95.1% (LDA)
are obtained.

A lot of research in this direction has been done by Soyel and Demirel. In [17], they
propose using 3D facial feature distances for expression recognition. By making use
of the symmetry of the face, they find the optimal number of facial feature 3D points
to be eleven, from which six characteristic distances are computed. These are: eye
opening distance, eyebrow height, mouth opening, mouth height, lip stretching and
normalization (distance between outermost points on left/right face contour). These
distances serve as input for a multilayer-perceptron-based neural network classifier.
Experiments are conducted on the BU-3DFE database, from which 60 subjects are
taken, showing seven expressions (basic expressions + neutral). For evaluation, this
dataset is arbitrarily divided into training set (54 subjects) and test set (6 subjects)
ten times and for each fold, classification is done. Results of this system show an
average recognition accuracy of 91,3%.

The same authors continue work on this approach in [18], changing some parameters
of the system. Hence, 23 facial landmark 3D points are used to compute six distance
features as above, with ’height of mouth’ replacing ’width of mouth’ and ’openness
of jaw’ replacing ’normalization’. Again, the BU-3DFE is used for experiments,
using the same setup as above. This time, a probabilistic neural network is used for
classification, which shows an average recognition rate of 87,8%.

A slightly different approach is presented in [19]. Here, normalized distances between
all pairs of 83 facial landmark points, given in the BU-3DFE database, form a
feature vector. From this vector, the most discriminating features are selected using
Non-dominated Sorted Genetic Algorithm II for feature selection. The output from
feature selection is fed to a probabilistic neural network. Experiments use data of
420 3D models from the BU-3DFE database, of which half are male, and the other
half are female, containing seven expression classes. For evaluation, data is split into
training set (336 models) and test set (84 models). Classification shows an average
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2.2. Appearance-based expression recognition

recognition rate of 88,18%.

In [20], Soyel and Demirel present an improved feature selection technique for the
system presented above. On the feature vector containing all distances between the
83 landmark points, PCA is performed for dimensionality reduction. From the re-
sulting principal components, an optimal subset according to the Fisher-criterion is
searched. Into this subset, LDA is computed, leaving a (c-1)-dimensional discrim-
inant subspace, with c being the number of classes. The experimental setup from
[19] is used here as well. A probabilistic neural network produces an average recog-
nition rate of 88,5%, using the presented feature selection method. Additionally,
a decision-tree based probabilistic neural network classifier, using a coarse-to-fine
scheme is proposed, which divides the seven expression classes into three groups
containing following expressions: group 1: surprise; group 2: anger, sadness and
neutral; group 3: disgust, fear and happiness. Therefore, in the coarse step, a new
sample is assigned to one of the groups, whereas in the fine step, the final classifica-
tion is performed. This approach shows superior results, with an average recognition
accuracy of 93,7%.

2.2 Appearance-based expression recognition

Appearance-based approaches extract information about facial expressions from a
given image, without having extensive knowledge about the object of interest. Algo-
rithms using this method are typically fast and simple, running filters and classifiers
on an image [21].

Zhu et al. introduce dynamic cascades with bidirectional bootstrapping for selecting
positive and negative samples from video sequences for action unit detection in [22].
In order to classify action units, facial landmark points have to be found, which is
accomplished by using AAMs for face alignment, from which 66 facial feature points
are extracted. In addition to the points from the AAM, points from some other
areas of interest are used, e.g. nasolabial furrows. In order to obtain accurate po-
sitions of these additional points over a sequence, a backward piecewise affine warp
is applied. In the next step, appearance features are extracted. Before representing
the appearance features by computing SIFT descriptors on the landmark points,
the input face is normalized by registering it with respect to an average face, using
similarity transform. Additionally, difference of scale, in-plane-rotation and transfor-
mation among the images are eliminated. Afterwards, positive and negative sample
sets are repeatedly learned and updated by utilizing bidirectional bootstrapping in
combination with the training of dynamic cascade detectors.

Based on [22], a system using segment-based SVMs to detect action units in video
sequences is developed in [23]. This system combines the two main approaches
in this area of research, which are static modeling and temporal modeling. Static
modeling examines each video frame independently and represents a discriminative
classification problem, while temporal modeling arranges frames into sequences and
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is typically represented by a variant of dynamic Bayesian networks. Segment-based
SVMs consider “AU detection as a problem of detecting temporal events in a time
series of visual features”. Advantages of this approach are the modeling of depen-
dencies between features and length of AUs, the possibility of utilizing all segments
for training and the fact that no assumptions about the structure of the AUs are
needed.

In [24], the use of an unsupervised technique for clustering facial events is explored.
The goal is to automatically find facial actions in video sequences to accumulate
them in clusters. Therefore, facial features are detected and tracked by using Active
Appearance Models over a sequence of images. For normalization, each face is
registered with respect to an average face. Then, shape and appearance features are
generated for upper and lower face separately from data obtained from the AAM.
Shape features include distance between inner brow and eye, distance between outer
brow and eye, height of eye, height of tip, height of teeth and angle of mouth corners.
For appearance features, SIFT descriptors are extracted from eleven points around
the outer outline of the mouth and from five points on the eyebrows. On these
features, PCA is utilized to perform feature selection. The resulting feature vector
represents the expressive input face and is further processed by Aligned Cluster
Analysis in order to cluster different facial expressions.

A real-time face detection and facial expression recognition system is presented in
[25]. Haar-filters (Viola & Jones) are utilized to locate faces, which then are rescaled
and transformed into a Gabor magnitude representation, using a set of Gabor filters
at eight orientations and five spatial frequencies. These high dimensional feature
vectors are used for training classifiers. For classification of seven expressions (basic
expressions + neutral), SVM, Adaboost and a combination of both, called AdaSVM,
are compared. First, for each expression, one SVM is trained to discriminate between
the current and all other expressions. Then, by selecting the classifier with the max-
imum margin for the test example, the class decision is made. For evaluation, leave-
one-subject-out cross-validation is performed. Further experiments are conducted,
using linear, polynomial and RBF kernels with Laplacian and Gaussian basis func-
tions, showing best results for linear SVMs and Gaussian RBF kernel SVMs. These
results are then compared to Adaboost, which selects a subset of individual Gabor
filters as features. After optimizing threshold and scale parameters of each filter, the
feature performing best on the boosted distribution is chosen. Leave-one-group-out
cross-validation is used for evaluation, because Adaboost is remarkably slower than
SVMs. Finally, the two classification methods above are combined, resulting in a
classifier called AdaSVMs. Adaboost is used to select Gabor features, which then
serve as input for training SVMs. Experimental results show a recognition improve-
ment of 3,8% over Adaboost and 2,7% over SVMs. Further investigation reveals,
that by doubling the resolution and increasing the number of Gabor wavelets from
five to nine, classification accuracy is increased even more.

Zhang et al. compare geometry-based features and Gabor wavelet-based features for
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expression classification in [26]. Geometry-based features used are coordinates of 34
facial landmark points, which are labelled manually on a given face. At these points,
multi-scale and multi-orientation Gabor wavelet coefficients are extracted. Exper-
iments using a two-layer perceptron for dimensionality reduction and classification
show that Gabor wavelet-based features achieve much better results than geometric
features. Combining both types of features shows no significant improvement of
recognition accuracy.

Yang et al. [27] seek to avoid using AUs and rather use compositional features
around AU areas to interpret facial expressions. A given input face image is split
into local patches according to the locations of the AUs, and from each patch, local
appearance is represented by haar-like features. From a combination of some of these
features, compositional features are built, which are then processed by a boosting
learning procedure to construct a classifier.

In [28], Jiang et al. explore the use of Local Binary Pattern descriptors for AU
detection. For single images, Local Binary Patterns (LBP) and Local Phase Quanti-
sation (LPQ) are used, while for video sequences Local Binary Patterns from Three
Orthogonal Planes (LBP-TOP) and an extension to LPQ, which is called Local
Phase Quantisation from Three Orthogonal Planes (LPQ-TOP), are compared. In
the proposed system, first, the face is located by an adapted Viola and Jones face
detector. Then, head rotations and scale variations are removed by registering the
static image, respectively the first frames of the sequence. The frames of a sequence
are then aligned automatically and the sequence/static image is divided into small
blocks, from which LBP-TOP and LPQ-TOP, respectively LBP and LPQ features
are extracted. Obtained LBP histograms are concatenated to represent the im-
age or sequence, before feature selection is performed. Experiments using SVMs as
classifiers to detect nine upper face AUs show that LPQs generally achieve higher
recognition rates than LBPs, and that LPQ-TOP outperforms all other tested ap-
proaches.

Another approach utilizing LBPs for expression recognition is presented in [29],
where Shan and Gritti propose to learn LBP histogram bins in order to discriminate
different facial expressions. The bins offer a compact and discriminative representa-
tion of expressive faces, but since not all bins contribute to recognition performance,
the relevant ones are selected by Adaboost. Multi-scale LBP histogram bins are also
evaluated, showing an improvement over single scale LBPs.

2.3 Model-based facial expression recognition

Opposed to the appearance-based approaches, model-based methods describe the
face by modeling its shape and its appearance. The downside of this approach is,
that for the construction of the models, it is necessary to label the facial landmarks
by hand. Therefore, having a big amount of training data implies a lot of manual
labor.
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In [30], Sebe et al. create a database which contains videos showing authentic
facial expressions, and introduce a real-time facial expression recognition system. A
face is tracked by a piecewise Bézier volume deformation tracker, which constructs
a 3D wireframe model of the face. Landmark points are selected interactively in
the first frame of a sequence, and a face model consisting of 16 surface patches
is warped to fit the selected landmarks. From the fitted model, head motion and
facial deformations are extracted. By applying template matching to successive
frames, 2D image motions are measured, from which 3D motions are estimated. A
magnitude representation is used, which connects each feature motion to a simple
deformation of the face, resulting in a set of so called motion units (MUs). MUs are
similar to action units and represent the activation of a facial region, as well as the
direction and intensity of the motion. These MUs are used as input for classification.
Experiments are conducted on the generated database and on the Cohn-Kanade
database, applying a wide variety of classifiers. Best results are obtained by k-
Nearest-Neighbor-classifiers.

Ramanathan et al. [31] introduce a system which uses 3D morphable models to
recognize facial expressions. Morphable Expression Models are built from 3D face
meshes which are generated by a 3D face scanner. The morphing parameters repre-
sent facial deformations with respect to the neutral face and are therefore used as
features for expression classification. Each set of morphing parameters for a given
expressive face defines a point in the expression space, where different clusters are
formed for expressions neutral, happiness, sadness and anger. A new sample is clas-
sified by mapping it to the expression space through morphing and then deciding
which cluster it belongs to.

Lucey et al. present a system for facial action recognition by employing AAM
derived facial representations for classification in [32]. AAM features are obtained
by AAM tracking a face and extracting 2D shape and appearance as well as 3D
shape information from the AAM. Experimental results are generated, using different
classifiers, which are k-Nearest-Neighbor and Support Vector Machines with RBF
kernel.

Another approach using AAMs is described in [33], where an AAM is fitted to a new
face, from which similarity normalized shape and canonical normalized appearance
features are extracted. These features, as well as a combination of both, are used for
training SVM classifiers. Experiments show, that the combination of both feature
types outperforms the use of only one.

An approach to manifold based expression recognition using Active Shape Mod-
els (ASM) is presented in [34], which describes a new representation for tracking
and recognition of facial expressions based on manifold embedding and probabilistic
modeling in the embedded space. Therefore, video data is mapped to a low dimen-
sional expression manifold in a feature space, described by facial landmarks. Then,
a Gaussian mixture model is applied to cluster the data in the expression space.
Each of the clusters is represented by an ASM on top of which a particle filter is

10



2.3. Model-based facial expression recognition

used for tracking facial deformations and recognizing facial expressions, together in
one probabilistic framework.

Tong et al. introduce a unified probabilistic facial action model based on a Dynamic
Bayesian network in [35] to represent the spatio-temporal relationships between rigid
and non-rigid facial motions in video sequences. The relationship information from
the model is combined with visual information extracted from the given image. Ex-
periments indicate that the proposed method shows superior performance in com-
parison to Adaboost and a semantic AU model.

In [36], Mpiperis et al. present a system for 3D facial expression recognition and
expression-invariant 3D face recognition using bilinear models which represent the
contribution of expression and identity components to the facial appearance. There-
fore, through deformable 3D models, point correspondences among faces are deter-
mined in order to align facial feature locations. Then, an asymmetric bilinear model
is fitted to the deformable model parameters by estimating expression control ma-
trices and identity control vectors that minimize the total squared reconstruction
error. These estimations are used to build a Maximum Likelihood classifier in order
to estimate the likelihood of deformable model parameters for each expression. A
new sample is then assigned to the expression class with the highest likelihood. Ex-
periments for 3D expression recognition on the BU-3DFE database show an average
recognition rate of 90.5%.

Lee and Elgammal propose an approach to facial expression analysis in video se-
quences using nonlinear shape and appearance models in [37]. Dynamics of facial
expressions are modeled using low-dimensional manifold embedding. Non-linear
generative models and kernel mapping are utilized for learning non-linear shape and
appearance models in low-dimensional spaces which represent the facial deformations
during facial expressions. The model parameters, which are iteratively estimated,
are then used for classification.

A framework for 3D expression recognition in videos is built in [38], which repre-
sents expression sequences as path consisting of clusters on the expression manifold,
starting from a point that represents the neutral expression. The generalized ex-
pression manifold is built by transferring the facial deformations from the video to
a standard model. Representing the transition between clusters and paths, a proba-
bilistic model is learned. Then, the probability for each facial expression is modeled
as a mixture density with clusters as mixture centers. From a given test sequence,
facial deformations are projected to the standard model and posterior probabilities
are calculated for all expressions, assigning the expression class with the highest
probability to the sequence.

Zhao et al. propose a framework for automatic 3D expression recognition based on
a Bayesian Belief Net (BBN) and a Statistical Facial Feature Model (SFAM) in [39].
In order to automatically find facial landmark points, a previously learned SFAM
is fitted to a new 3D face. From the SFAM, different features are extracted, which
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are landmark locations, face texture and face shape. To improve recognition results,
additionally, shape index is calculated to model local surface curvature informa-
tion, and multi-scale LBPs are used to improve the representation of face texture.
Through the BBN, beliefs for different expressions are learned, and a new expressive
face is classified according to its calculated belief. Experiments on the BU-3DFE
database show an average recognition rate of 82,3% for automatically located facial
landmarks and 87,2% for manually located landmarks.

In [40], an approach for modeling and tracking rigid and non-rigid 3D facial defor-
mations from 2D video sequences is introduced. A face is represented by 42 facial
landmark points, which are localized by a 2D active shape model in the video se-
quences. The landmarks are tracked over a sequence and then projected to 3D by
using a previously learned face model. A 3D deformable face model is constructed
from a combination of 1D nonlinear manifolds, where each manifold represents a
mode of deformation or expression. The manifolds are learned offline from sequences
of labelled expressions using Tensor Voting, which is used for estimating geometric
information. Any expression is then represented by a linear combination of values
along the manifold axes.

2.4 Multi-view facial expression recognition

Multi-view expression recognition systems extend frontal face expression recognition
approaches in order to process expressive face images or video sequences at different
view angles.

Hu et al. explore in [4] whether or not non-frontal view expressions can achieve
higher recognition accuracy than expressions on frontal faces. Therefore, 2D im-
ages together with groundtruth landmark points are generated from the BU-3DFE
database at five different views (0, 30, 45, 60, 90 degrees of head rotation). The
geometric 2D displacement of the landmark points in expressive faces is calculated
in comparison to the neutral face and normalized for each subject in the database.
The locations of the normalized landmark points around eyes, eyebrows and mouth
form a feature vector, which is used as input for classification. Different classifiers
are evaluated, which are: Linear Bayes Normal Classifier, Quadratic Bayes Normal
Classifier, Parzen classifier, SVMs with linear kernel and K-Nearest-Neighbor Clas-
sifier. The latter is used in combination with feature selection techniques PCA, LDA
and Locality Preserving Projection (LPP). 5-fold-cross-validation is used for gener-
ating results, employing 80 subjects for training and 20 for testing. Experiments
show, that highest recognition accuracy is achieved on non-frontal views between 30
and 60 degrees, with SVM classifiers showing best overall results with an average
error rate of 33,5%. The authors conclude that the reason for non-frontal views to
achieve better results than frontal view might be, that frontal faces contain redun-
dancy due to the symmetry of the face, while faces rotated by around 45 degrees
additionally contain depth information.
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In [5], an approach to multi-view facial expression recognition is presented, which
compares classification results for several appearance features, which are extracted
at groundtruth facial landmark points. Techniques used for extracting features are:
Histogram of Oriented Gradients (HoG), LBP and SIFT. Moreover, raw appearance
intensity is used for comparison. Before doing classification with a Nearest-Neighbor-
classifier, feature selection is performed, using LPP, PCA and LDA. Original data
without feature selection is also classified for comparison. The system is divided into
two stages. First, a view classifier determines the pose angle of the input image, with
possible values being 0, 30, 45, 60 and 90 degrees. Then, for each pose, an expression
classifier is trained to output one of the six basic expression classes. Experiments are
conducted on the BU-3DFE database, which contains 3D models of 100 subjects,
showing facial expressions at different levels of intensity. In the experiments, for
each of these models, 2D images are taken from five different angles. Coordinates of
the facial landmarks are extracted and saved as well. For evaluation, a 5-run two-
fold cross-validation person-independent scheme is used, randomly splitting the 100
subjects of the database into two equally sized groups, using one group as training
data and the other group as test data. First, the appearance features are extracted
from the facial landmark points. Then, for dimensionality reduction, different feature
selection methods are utilized. Finally, this data serves as input for the Nearest-
Neighbor classifier. For each of the feature extraction methods, the results are given
for the original data set as well as for data sets using LPP, PCA and LDA for feature
selection. Error rates are displayed for raw appearance intensity, with the original
data set achieving the best result with an average error rate of around 57%. Using
HoG features, LPP data improves by around 22 percent compared to the original
set and has the best result with an average error rate of around 32%. For LBP
and SIFT, LPP outperforms the other reduction methods (and original set) by far,
showing average error rates of around 35% (HoG) and around 27% (SIFT), while the
other methods get error rates of around 54% on HoG features (except LDA: around
39%) and around 44% on SIFT features. Also, experiments based on a combination
of SIFT+LPP, HoG+LPP and LBP+LPP classifiers are performed, showing results
of 26,54% best average error rate. Another approach introduced in this paper is to
build only one classifier with each possible combination of view and expression being
considered a class. Since there are five views and six expressions, this adds up to
30 classes. The average error rate for HoG features increases by up to 10%. There
are no results for SIFT and LBP features for this approach since this experiment
exceeded the available computer capabilities.

In [6], a system for multi-view facial expression recognition under Bayes theoretical
framework is developed. Features for classification are extracted by computing SIFT
descriptors at 83 hand-labelled landmark points on face images. Each descriptor is
a 128-dimensional feature vector. Hence, for representing a complete face, a 10624-
dimensional feature vector is received, which is then reduced to 500 dimensions using
PCA. Multi-class expression recognition is performed by “minimizing an estimated
closed-form Bayes error”. For experimental validation, data from the BU-3DFE
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database at five different views is used. Results are produced by running ten trials,
each trial randomly splitting 100 subjects into two sets, the training set containing
80 subjects, the test set 20 subjects. By averaging results of all runs, an error rate of
21,65% is received. For comparison, k-Nearest-Neighbor classifiers are trained using
SIFT features, processed by LDA respectively PCA, resulting in an average error
rate of 23,1% respectively 33,84%.

Zheng et al. introduce a novel system for emotion recognition from arbitrary view
facial images in [41], using a region covariance matrix (RCM) representation of face
images. First, the face region is detected on a given input image. Then, this re-
gion is split into patches and at the center of each patch, a SIFT feature vector is
extracted. By computing the covariance of the SIFT vectors, a region covariance
matrix is received. This approach has the advantage, that neither face alignment
nor facial feature localization is necessary. The authors also present a new dis-
criminant analysis theory for selecting the most relevant features, which carry the
most discriminative information from the facial feature vectors by minimizing an
estimated multi-class Bayes error, derived under the Gaussian mixture model. Also,
an algorithm to solve the optimal discriminant vectors is proposed. Evaluation is
conducted on the BU-3DFE database, from which 2D images are extracted. Only
expression images showing the highest level of intensity are used in this study. Face
poses are varied using yaw angles (-45, -30, -15, 0, 15, 30, 45 degrees) and pitch
angles (-30, -15, 0, 15, 30 degrees). Therefore, 100 (subjects) × 6 (expressions) × 7
(yaw angles) × 5 (pitch angles) = 21000 images are generated. The dataset is split
into five equally-sized sets and five-fold cross-validation is performed, using four sets
for training and one set for testing. Lowest error rate is achieved for frontal face
without any pose variation (25%). Lowest average error rates are shown for yaw =
0 degrees with pitch varying (28,27%), and for pitch = 0 degrees with yaw varying
(28,1%).

In [42], a system using LBPs for multi-view facial expression recognition is presented.
In this approach, images are divided into 64 sub-blocks, and similarities between the
blocks are compared. Thus, local texture as well as global shape of a face image
is captured. Then, a histogram of LBP features is computed, forming a feature
vector which is fed to a pose-dependent classifier. Experiments are conducted on
two different datasets. First, images are extracted from the BU-3DFE database at 5
different poses (0, 30, 45, 60, 90 degrees) and 4 different resolutions (32 × 44, 44 ×
62, 64 × 88 and 80 × 110). Pose estimation is performed to select a pose-dependent
SVM for later classification. Different LBP approaches are used to compute LBP
features, which are:
-LBP riu2: Uniform rotation invariant local binary patterns
-LBP ri: Rotation invariant local binary patterns
-LBP gm: Uniform local binary patterns obtained from gradient magnitude image
-LBP u2: Standard local uniform binary patterns with a neighborhood of 8 pixels
and a radius of 1 pixel
-LBPms: Multi-scale local binary patterns where radius varies from 1 to 8 pixels
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-LGBP : Local binary patterns extracted from gabor images, where 40 different
gabor images are composed from applying gabor kernels at different scales and ori-
entations.

Results show a maximum difference of less than 3% for varying resolutions. LGBP
and LBPms perform best, with an average accuracy of 67,96%, respectively 65,02%.
By combining these two, results improve further to 71,1%. Influence of intensity
levels are also reviewed, indicating average accuracies of 56,83%, 68,83%, 73,04%
and 77,67% from low to high intensities for LGBP . The second database, on which
experiments are performed, is Multi-PIE. It contains images from 337 subjects, which
are predominantly male (70%). The database contains a variety of ethnicities and
ages. The 100 subjects selected display following facial expressions: neutral, smile,
surprise, squint, disgust and scream. First, a Viola & Jones face detector is run
on the input image. Then, the experiment proceeds similar to experiments on the
BU-3DFE database. Results are shown for LBPms and LGBP , achieving 73,98%,
respectively 80,17% accuracy. Best results appear at 15 degree pose.

A regression-based approach to multi-view facial expression recognition is presented
in [7]. Since there is much more training data available for frontal faces than for
non-frontal faces, Rudovic et al. propose to map facial landmark points from non-
frontal view to frontal view using different state-of-the-art regression methods, which
are: Linear Regression, Support Vector Regression, Relevance Vector Regression and
Gaussian Process Regression. The system is organized as follows. Given a 2D image
containing a non-frontal view face, first, the head pose is estimated and assigned
to a pre-defined pose class. Then, 39 facial landmark points are localized, using
state-of-the-art-methods. The goal is then to find mapping functions that transform
the landmark points from arbitrary poses to frontal pose. After the functions are
found, they are used to predict the locations of the landmark points in frontal view.
The predicted points are then input to a frontal view expression classifier. Finally,
the classifier outputs the recognized expression class. Experiments are conducted on
CMU Multi-PIE database, using 4 different views, namely 0, 15, 30 and 45 degrees,
where 4 expressions are to be recognized by linear SVMs.

Taheri et al. [8] present an approach leading towards view-invariant expression anal-
ysis using analytic shape manifolds, which avoids dependency of facial deformations
on a camera coordinate frame. A face shape is considered an equivalence class across
view changes, rather than a vector containing feature information. The rigid and
non-rigid deformations of facial landmarks are decoupled, so that the deformations
caused by head rotation can be ignored. Generally, a 2D image of a face shows a
perspective projection from 3D to 2D points and therefore, the authors claim the
projective shape-space to be well suited for modeling facial geometry as equivalence
classes independent of head poses. Hence, invariance to camera angle changes can
be achieved. For better understanding, projective shapes are approximated by using
affine shapes. A sequence of faces showing an expression can be represented by a
sequence of points in the Grassmann manifold. Facial deformations are then mod-
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eled by geodesics on the manifold, “where a geodesic is a path of shortest length
on the manifold between two given points”. Geodesics are described by velocity
vectors on the tangent plane at the starting point. Experiments are conducted on
different datasets (CK, Bosphorus, talking face) to show that this approach achieves
good recognition results in classifying AUs as well as basic emotions. Geodesics are
learned for each AU and each emotion, on which then, LDA (and kernel LDA for
Grassmann space) is performed, before classification is done using SVMs. Results
of algorithms on Grassmann space and Euclidean space are compared, showing that
classification on Grassmann space outperforms classification on Euclidean space.

A system for recognition of profile view action units is developed in [9], using video
sequences which show profile faces displaying expressions. Each sequence is divided
into onset, apex and offset. In the first frame, 15 facial feature points are initial-
ized by hand, which are then tracked throughout the whole sequence using particle
filtering. For each frame, the movement of the landmark points is measured with
respect to the location of the points in the first frame. Therefore, two parameters
are defined:
- up/down(P ), which measures upward and downward movements of point P ,
- inc/dec(PP ′), which measures increase and decrease of the distance between P
and P ′.
The movement of the facial feature points, represented by these parameters, is used
for classifying 27 AUs.

The application of view-based 2D + 3D Active Appearance Models in combination
with generalized discriminant analysis (GDA) for expression classification is pro-
posed by Sung and Kim in [10]. In order to build 2D + 3D AAMs, facial feature
points are hand-labelled in training images for three different poses: left, frontal
and right. For each pose, 2D shape and appearance models are built, and from
the 2D models for different views a 3D shape model is constructed. Hence, 3 pose-
dependent 2D AAMs are obtained. For a given input image, the pose is estimated
and the corresponding AAM is selected, which is then fitted to the image. From
the fitted AAM, 2D appearance and 3D shape coefficients are extracted, which are
then processed by a GDA method, which transforms the coefficients into feature vec-
tors in the 2D appearance feature spaces and 3D shape feature space, respectively.
The feature vectors are then concatenated and fed to another GDA, which trans-
forms the concatenated vector into an integrated facial expression feature vector. A
Malahanobis distance based classifier finally determines the facial expression class.
Experiments on four different expressions, namely neutral, happiness, surprise and
anger, show similar recognition rates for the three different poses. The frontal model
seems to deal better with classifying expressions from another pose, compared to left
and right pose models.
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In this work, a multi-view expression recognition system is built, which receives a 2D
image containing a face as input. After performing pose estimation and face recogni-
tion, a previously trained Active Appearance Model is fit to the input face. Several
features are extracted from the AAM: shape parameters, appearance parameters
and facial landmark points, on which then appearance descriptors (SIFT/DCT) are
computed. Dimensionality reduction is performed on the extracted feature vectors
through feature selection, and finally, these vectors are fed to a SVM classifier. In
this section the theoretical backgrounds of these methods and algorithms are pre-
sented.

3.1 Active Appearance Models

Active Appearance Models were introduced in [11] by Cootes et al. and are used
for matching a statistical model of object shape and appearance to a new image.
AAMs are often utilized for modeling faces or other deformable objects. In this
section, a general model formulation is given, presenting definitions of shape and
appearance modeling [43]. Then, different algorithms for AAM fitting are introduced
and explained, and finally, pose-dependent AAMs are specified.

3.1.1 Model formulation

Independent AAMs model shape and appearance separately, as described below.
There exist also combined AAMs, which use a single set of parameters for describing
shape and appearance. This formulation is more general and needs less parame-
ters to model the same visual phenomenon in comparison to independent AAMs.
However, there are also disadvantages of this approach. It can be no longer assumed
that eigen-shapes and eigen-appearances are respectively orthonormal. Furthermore,
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since combined AAMs restrict the choice of fitting algorithms, the inverse composi-
tional algorithm used in this work would not be applicable. Therefore, this section
focuses on independent AAMs.

Shape

The shape s is defined by a mesh and the vertex locations of the mesh, i.e. the
coordinates of the v vertices: s = (x1, y1, x2, y2, ..., xv, yv)

T . AAMs allow linear
shape variation, which means that the shape can be described by a base shape s0
plus a linear combination of n shape vectors si:

s = s0 +
n∑

i=1

pisi, (3.1)

with pi being shape parameters. See Figure 3.1 for illustration.

Figure 3.1: Illustration of linear shape variation. AAM shape is described by the
base shape s0 plus a linear combination of shape vectors si, here i = 1,
2, 3. Image taken from [43].

For building an AAM, training images containing hand-labelled landmark points are
needed. In the standard approach, PCA is applied to the training meshes. The base
shape s0 is the mean shape, and the vectors si are the n eigenvectors corresponding
to the n largest eigenvalues.

Appearance

The appearance of an AAM is an image A(x), defined over the pixels x lying within
the base mesh s0. Similar to shape, AAMs allow linear appearance variation, which
means that the appearance can be described by the base appearance A0(x) plus a
linear combination of m appearance images Ai(x):

A(x) = A0(x) +
m∑
i=1

λiAi(x), ∀x ∈ s0, (3.2)

with λi being appearance parameters. An example is shown in Figure 3.2.
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Figure 3.2: Illustration of linear appearance variation. AAM appearance is described
by base appearanceA0(x) plus a linear combination of appearance images
Ai(x), here i = 1, 2, 3. Image taken from [43].

By applying PCA to a set of shape normalized training images, A0 and Ai are
computed. The shape normalization is obtained by warping the training shape onto
the mean shape s0. After triangulating the shape, a piecewise affine warp is defined
between corresponding triangles in the training and base meshes. A0 is the mean
image, while the images Ai are the m eigenimages corresponding to the m largest
eigenvalues.

Model instantiation

A requirement for instantiating a model is to have available both the shape s, which
is computed from the shape parameters p = (p1, p2, ..., pn)T , and the appearance
A(x), which is computed from the appearance parameters λ = (λ1, λ2, ..., λm)T . The
AAM model instance is then generated by warping the appearance A from the base
mesh s0 to the model shape s. The pair of meshes s0 and s define the warp from s0
to s which is denoted as W(x; p). For each triangle in s0 a corresponding triangle
in s exists. Between the members of any pair of triangles a unique affine warp is
defined, which maps the points of one triangle to the other triangle. The complete
warp is obtained by finding out for any pixel x ∈ s0 in which triangle it is located
and then warping it with the affine warp for that triangle. This piecewise affine
warp is denoted as W(x; p). The AAM model instance M(W(x; p)) is obtained by
warping the appearance A from s0 to s using W(x; p):

M(W(x; p)) = A(x), (3.3)

where M is a 2D image of the appropriate size and shape that contains the model
instance. See Figure 3.3 for an example.

3.1.2 AAM Fitting

To fit an AAM to a given image, algorithms are developed with the objective to
find the best matching AAM parameters in an efficient way. In [43], the concepts of
AAM fitting together with an overview of several algorithms is presented.
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Figure 3.3: Example for AAM model instantiation. AAM model instance
M(W(x; p)) is generated by warping the appearance A from the base
shape s0 to the model shape s using the warp W(x; p). Image taken
from [43].

Fitting goal

Given an input image I(x), the goal of AAM fitting is to find optimal shape pa-
rameters p and appearance parameters λ of an AAM, so that the model instance
M(W(x; p)) = A(x) is similar to I(x). Therefore, the minimization of the error
between model instance and input image is used as optimization criterion. For ef-
ficiency reasons, the error is computed in the base mesh s0 in the AAM coordinate
frame instead of using the image coordinate frame. A pixel x lying in s0 has a cor-
responding pixel in the input image, which is defined by W(x; p). The appearance
of the AAM at pixel x is defined by A(x) = A0(x) +

∑m
i=1 λiAi(x) and the intensity

of the input image at pixel W(x; p) is I(W(x; p)). The error to be minimized is
the sum of squares of the differences between these two quantities over all pixels x
in the base mesh s0:

∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x)− I(W(x; p))

]2
. (3.4)

Equation 3.4 is minimized with respect to p and λ simultaneously. This optimization
is nonlinear in p but linear in λ. The error image is defined as:
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E(x) =

[
A0(x) +

m∑
i=1

λiAi(x)− I(W(x; p))

]
(3.5)

and can be computed by first backwards warping the image I onto the base mesh
s0 with W(x; p) and then subtracting it from the current appearance of the AAM.

Inefficient gradient descent algorithms

The expression in 3.4 can be minimized by applying standard gradient descent opti-
mization algorithms, which use a principled, analytical algorithm and easily under-
standable convergence criterions. The drawback of this approach is that it is very
slow. The slowness is caused by several complex computations, which have to be re-
calculated for every iteration, like computing partial derivates, Hessian and gradient
direction.

Efficient ad-hoc fitting algorithms

In order to avoid these complex computations, more efficient algorithms make the
simple assumption that there is a constant linear relationship between the error
image E(x) and additive increments to the shape and appearance parameters:

∆pi =
∑
x∈s0

Ri(x)E(x) and ∆λi =
∑
x∈s0

Si(x)E(x) (3.6)

where Ri(x) and Si(x) are constant images defined on the base mesh s0. Constant
means, that Ri(x) and Si(x) are independent from pi and λi. Therefore, the com-
putational cost is reduced. But since the assumption is incorrect, at the same time
the fitting accuracy is decreased.

Matthews and Baker [43] proved, that there can not be an efficient gradient descent
algorithm that solves for ∆p and then updates the parameters p ← p + ∆p. A
different way of updating the parameters is the compositional approach, in which
the entire warp is updated by composing the current warp with the computed in-
cremental warp with parameters ∆p, leading to the update rule:

W(x; p)←W(x; p) ◦W(x; ∆p). (3.7)

Lucas-Kanade algorithm

The Lucas-Kanade algorithm is a forwards-additive algorithm, which searches the
location of a constant template image in an input image by minimizing the sum
of squared differences between the template A0(x) and the input image I(x) with
respect to p:
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3. Theoretical Background

∑
x

[A0(x)− I(W(x; p))]2, (3.8)

where W(x; p) is a warp that maps the pixels x from the template to the input
image and has parameters p. Given an initial estimate of p, the Lucas-Kanade algo-
rithm solves iteratively for increments to the parameters p by minimizing following
Equation with respect to p, and then updates p← p + ∆p:

∑
x

[A0(x)− I(W(x; p + ∆p))]2. (3.9)

Figure 3.4: Illustration of the forwards compositional algorithm. The templateA0(x)
is warped to the input image I(x) with warp W(x; p). By minimizing
the squared error between the warped template image and the input
image, an incremental warp is found and composed with the original
warp: W(x; p)←W(x; p) ◦W(x; ∆p). Image taken from [43].

Forwards compositional algorithm

Instead of updating the parameter p with estimated ∆p offset, the compositional
method computes an incremental warp W(x; ∆p) to be composed with the current
warp W(x; p). The minimization is over:

∑
x

[A0(x)− I(W(W(x; ∆p); p))]2 (3.10)
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3.1. Active Appearance Models

and in the update step, the incremental and the current warp are composed:

W(x; p)←W(x; p) ◦W(x; ∆p). (3.11)

Computing the solution for ∆p in Equation 3.10 means that the incremental warp
is computed in the ’image’ direction. Composing it with the current warp (see
Equation 3.11) results in the forwards compositional algorithm. An illustration is
given in Figure 3.4.

Inverse compositional algorithm

The inverse compositional algorithm is a modification of the forwards compositional
algorithm, where the roles of template image and sample input image are reversed.
The incremental warp is computed with respect to the template A0(x), not with
respect to I(W(x; p)). Therefore, the inverse compositional algorithm minimizes

∑
x

[I(W(x; p))− A0(W(x; ∆p))]2 (3.12)

with respect to ∆p and then updates the warp:

W(x; p)←W(x; p) ◦W(x; ∆p)−1. (3.13)

Taking the Taylor expansion of equation 3.12 gives:

∑
x

[
I(W(x; p))− A0(W(x; 0))−∇A0

∂W

∂p
∆p

]2
. (3.14)

Assuming that W(x; 0) is the identity warp, the solution to this least squares prob-
lem is:

∆p = H−1
∑
x

[
∇A0

∂W

∂p

]T
[I(W(x; p))− A0(x)], (3.15)

where H is a Hessian matrix with I replaced by A0:

H =
∑
x

[
∇A0

∂W

∂p

]T [
∇A0

∂W

∂p

]
. (3.16)

Since A0 is constant and the Jacobian ∂W
∂p

is always evaluated at p = 0, most of the
computations in Equations 3.15 and 3.16 have to be computed only once and can
therefore be moved to a pre-computation step.
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3. Theoretical Background

This results in a more efficient fitting algorithm, which is described step-by-step in
Algorithm 1 and illustrated in Figure 3.5.

Figure 3.5: Illustration of the inverse compositional algorithm. Opposed to the for-
wards compositional algorithm, the incremental warp is computed with
respect to the template A0(x), not with respect to I(W(x; p)). There-
fore, the update step is composed by: W(x; p)←W(x; p)◦W(x; ∆p)−1.
Image taken from [43].

Algorithm 1 Inverse compositional algorithm

Pre-compute:
3: Evaluate the gradient ∇A0 of the template A0(x)
4: Evaluate the Jacobian ∂W

∂p
at (x; 0)

5: Compute the steepest descent image ∇A0
∂W
∂p

6: Compute the Hessian matrix using Eq. 3.16
Iterate until converged:
1: Warp I with W(x; p) to compute I(W(x; p))
2: Compute the error image I(W(x; p))− A0(x)

7: Compute
∑

x

[
∇A0

∂W
∂p

]T
[I(W(x; p))− A0(x)]

8: Compute ∆p using Eq. 3.15
9: Update the warp W(x; p)←W(x; p) ◦W(x,∆p)−1

Simultaneous inverse compositional algorithm

At the beginning of this section, the goal of AAM fitting is set to minimize Equation
3.4 simultaneously with respect to shape parameters p and appearance parameters λ.
Therefore, the simultaneous inverse compositional algorithm iteratively minimizes
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3.1. Active Appearance Models

Algorithm 2 Simultaneous inverse compositional algorithm

Pre-compute:
3: Evaluate the gradient ∇A0 and ∇Ai for i = 1, ...,m
4: Evaluate the Jacobian ∂W

∂p
at (x; 0)

Iterate until converged:
1: Warp I with W(x; p) to compute I(W(x; p))
2: Compute the error image Eapp(x) Eq. 3.22
5: Compute the steepest descent images SDsim(x) (Eq 3.18)
6: Compute the Hessian Hsim using Eq. 3.21 and invert it
7: Compute

∑
x SD

T
sim(x)Eapp(x)

8: Compute ∆q = −H−1sim

∑
x SD

T
sim(x)Eapp(x)

9: Update the warp W(x; p)←W(x; p) ◦W(x,∆p)−1 and λ← λ+ ∆λ

∑
x

[
A0(W(x; ∆p)) +

m∑
i=1

(λi + ∆λi)Ai(W(x; ∆p))− I(W(x; p))

]2
(3.17)

simultaneously with respect to ∆p and ∆λ = (∆λ1, ...,∆λm)T and then updates the
warp W(x; p)←W(x; p)◦W(x; ∆p)−1 and the appearance parameters λ← λ+∆λ.

Parameters p and λ are combined to form a n + m dimensional column vector
q = [p, λ]T and similarly, the update ∆q = [∆p,∆λ]T .

An n+m dimensional steepest descent image SDsim is then defined as:

SDsim(x) = (∇A∂W

∂p1
, ...,∇A∂W

∂pn
, A1(x), ..., Am(x)), (3.18)

where

∇A = ∇A0 +
m∑
i=1

λi∇Ai. (3.19)

Then, the update is computed as

∆q = −H−1sim

∑
x

SDT
sim(x)Eapp(x), (3.20)

where H−1sim is the inverse of the Hessian matrix

Hsim =
∑
x

SDT
sim(x)SDsim(x) (3.21)
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3. Theoretical Background

and Eapp is the error image between the warped input image and the model instance:

Eapp = I(W(x; p))−

[
A0(x) +

m∑
i=1

λiAi(x)

]
. (3.22)

The steepest descent images SDsim depend on λ and therefore are not constant,
which means, that they have to be recomputed each iteration. A summary of the
algorithm is given in Algorithm 2.

3.1.3 Pose-dependent AAMs

In this thesis, facial expression recognition is performed for a variety of head poses.
Using only one AAM for all different poses is not sufficient. Therefore, the poses
are divided into different views, ranging from -90 to +90 degrees of horizontal head
rotation with 15 degree steps. For each view, one AAM is trained, resulting in
13 AAMs. Hence, the pose of a given input image face has to be specified. A
pose estimator processes the face in order to assign a pose class. According to this
class, the corresponding AAM is selected for further application. In this work, the
groundtruth pose is used for deciding which AAM to use, since pose estimation
preferably should not have an influence on the recognition accuracy. Adding this
component to the system is considered for future work. A pose estimator could fit
different AAMs to a given face, compute the fitting error and then select the AAM
with the smallest error. Another possibility is to locate a few landmark points on the
input face image, e.g. eye centers, tip of the nose and mouth corners, and estimate
the pose by finding correspondences between the landmark points and points on a
previously learned face model.

3.2 Appearance Features

Two different approaches for representing facial expression images through appear-
ance features are presented in this section, namely Scale-Invariant Feature Transform
(SIFT) and Discrete Cosine Transform (DCT).

3.2.1 Scale-Invariant Feature Transform

SIFT, which was introduced by Lowe in [12], is an algorithm for extracting local
appearance features from an input image. The general SIFT algorithm is often used
for object recognition and has four processing steps:

� Scale-space extrema detection

� Keypoint localization

� Orientation assignment
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3.2. Appearance Features

� Keypoint descriptor extraction

Further information on the complete algorithm can be found in [44].

For applying SIFT to the facial expression recognition system in this work, not all
steps are necessary, since facial landmark points are used as keypoints. Hence, the
keypoint locations are extracted from the AAM, while scale and orientation of the
keypoints are selected manually. The most important part of SIFT used here is the
keypoint descriptors, which represent the local appearances of a given image.

To compute feature descriptors for given keypoints, several steps have to be per-
formed. First, gradient magnitudes and orientations are sampled around each key-
point and the level of gaussian blur is selected according to the keypoint scale. Then,
the coordinates of the descriptor and the gradient orientations are rotated relative
to the orientation of the keypoint. To each sample point, a magnitude is assigned by
a Gaussian weighting function, which prevents small changes in the window position
leading to the occurrence of big changes in the descriptor. Also, gradients lying fur-
ther away from the center of the descriptor are considered less significant. As shown
in Fig. 3.6 on the left side, orientation histograms are created over 4 × 4 sample
regions. For each histogram, eight directions are displayed, with the length of each
arrow corresponding to the magnitude of the histogram entry. Each entry into a
bin is multiplied by a weight of 1 - d for each dimension, where d is the distance
of the sample from the central value of the bin. Finally, the descriptor is formed
from a vector containing values of all orientation histogram entries corresponding
to lengths of arrows. On the right side of Fig. 3.6, a 2 × 2 array of orientation
histograms is shown. Further experiments indicate, that better results are received
for 4 × 4 arrays of histograms with eight orientation bins each. In order to reduce
the influence of illumination changes, the vector is normalized to unit length.

Figure 3.6: Illustration of a SIFT descriptor. From an area of an input image, im-
age gradients are extracted, weighted by a Gaussian function, forming
orientation histograms, from which the SIFT descriptor is constructed.
Part of this image is taken from [44].
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3.2.2 Discrete cosine transform

The discrete cosine transform (DCT) is a signal processing tool, which was intro-
duced in [13]. Several variants of the DCT exist, but only the two-dimensional DCT
used in this work will be described in this section. Further information on DCT can
also be found in [45]. DCT can be used to represent local appearance features in
a compact way, while preserving spatial relationships, outperforming methods like
PCA and discrete wavelet transform when applied to face recognition [46]. The DCT
for two-dimensional input f(x, y) is defined as:

C(u, v) = α(u)α(v)
N−1∑
x=0

N−1∑
y=0

f(x, y) cos

[
(2x+ 1)uπ

2N

]
cos

[
(2y + 1)vπ

2N

]
(3.23)

for u, v = 0, 1, ..., N − 1, where

α(u) =


√

1
N

for u = 0√
2
N

for u = 1, 2, ..., N − 1
.

An input image is divided into several blocks, and for each block, DCT coefficients
are computed by applying DCT basis functions, which are shown in Fig. 3.7. The
coefficient at the upper left (0,0) represents the average intensity value of the image,
(1,0) the horizontal, (0,1) the vertical and (1,1) the diagonal changes in the image.
The coefficients are ordered in a zig-zag pattern, which is displayed in Fig 3.8.

Figure 3.7: Illustration of DCT basis functions. When applied to an input image, the
origin (0,0) at top left represents the average intensity value of the image,
(1,0) the horizontal, (0,1) the vertical and (1,1) the diagonal changes in
the image. Image taken from [47].
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Figure 3.8: Illustration of zig zag scanning. The coefficients extracted from DCT are
ordered in a zig zag pattern from top left to bottom right. Image taken
from [47].

From each block, a subset of the ordered coefficients is selected, leaving out the
first coefficient (at (0,0)), because it only indicates the average intensity value of
the block. The selected coefficients are concatenated to form a feature vector for
further processing of the image. In this work, DCT features are computed on facial
landmark points on images of size 300 × 300 pixels, using 68 points for frontal poses
and 36 points for side poses. Around each landmark point, a block of size 64 ×
64 pixels is divided into four blocks of size 32 × 32 pixels, extracting the first 20
coefficients (except the first one) from each block.

3.3 Feature Selection - F-score

Sometimes thousands of features are used as input for a classifier. Some of them
may be redundant or noisy. Therefore, feature selection picks the features relevant
for classification, and drops the irrelevant ones. This results in a reduction of the
data dimensionality, which increases the learnability as well as the computational
efficiency.

In this work, the feature selection tool of LibSVM library called FSelect [48] has
proven to produce best results. It uses the F-score technique to find the best subset
of features.

F-score searches the subset of features that discriminates two sets of real numbers
the best. Given training vectors xk, where k = 1, ...,m, and numbers of positive and
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negative instances n+ and n−, respectively, the F-score of the ith feature is defined
as:

F (i) ≡

(
x
(+)
i − xi

)2
+
(
x
(−)
i − xi

)2
1

n+−1

n+∑
k=1

(
x
(+)
k,i − x

(+)
i

)2
+ 1

n−−1

n−∑
k=1

(
x
(−)
k,i − x

(−)
i

)2 (3.24)

where xi is the average of the ith feature of the complete data set and x
(+)
i and x

(−)
i

are the averages of the ith feature of the positive and negative data sets, respectively.
x
(+)
k,i is the ith feature of the kth positive instance, and x

(−)
k,i is the ith feature of the

kth negative instance. In Eq. 3.24, the discrimination between the positive and
negative sets is represented by the numerator, while the denominator describes the
discrimination within each of the two sets. Features achieving higher F-scores are
likely to be more discriminative than features with low F-score. Hence, the F-score
is used as feature selection criterion. The complete algorithm for F-score feature
selection is presented in Algorithm 3.

Algorithm 3 F-score feature selection algorithm

1: Calculate F-score of every feature.
2: Use different possible thresholds to cut low and high F-scores.
3: for each threshold do
4: Drop features with F-score below threshold.
5: Randomly split the training data into Xtrain and Xvalid.
6: Let Xtrain be the new training data. Use the SVM procedure to obtain a

predictor; use the predictor to predict Xvalid.
7: Repeat the steps above five times, and then calculate the average validation

error.
8: end for
9: Choose the threshold with the lowest average validation error.
10: Drop features with F-score below the selected threshold. Then apply the SVM

procedure.

3.4 Support Vector Machines
The proposed expression recognition system is supposed to output an expression
class in the end. That is, why a classification method is needed, which decides for
given feature values, which class a new instance belongs to. In this system, Support
Vector Machines, introduced in [14], are used, which are supervised learning methods
that analyze data and recognize patterns.

3.4.1 General SVMs

General binary linear SVMs process labelled training feature vectors in a high-
dimensional feature space, where vectors of two different classes are separated lin-
early by a hyperplane. An optimal hyperplane is found, if the distance between the
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hyperplane and the so called Support Vectors, which are the vectors defining the
margin of the hyperplane. The hyperplane is determined by the Support Vectors,
hence the name Support Vector Machine. An illustrating example is given in Figure
3.9.

Figure 3.9: Example of a Support Vector Machine separating red squares and blue
points. A: hyperplane optimally separating 2 classes, B: non-optimal hy-
perplane. Points/Squares lying closest to optimal hyperplane are called
Support Vectors. Image taken from [49].

Any hyperplane can be written as a set of points x, satisfying

w · x− b = 0, (3.25)

where · is the dot product, w a normal vector to the hyperplane and b
‖w‖ describes

the offset of the hyperplane from the origin along w. Hyperplanes spanned by the
Support Vectors have the maximum distance to the optimal hyperplane and are
defined by

w · x− b = 1 and w · x− b = −1. (3.26)

The distance between these two hyperplanes is 2
‖w‖ . Consequently, to maximize

the distance between these hyperplanes, w has to be minimized. After an optimal
hyperplane in the feature space has been found, an unlabelled test sample is classified
according to the side of the hyperplane it is located on.

There might be circumstances, where it is not possible to separate two classes linearly
without error. If this is the case, it is possible to have a soft margin, which allows a
minimal number of errors to occur. Another way of solving this problem is to apply
the so called kernel-trick : the non-linear data is mapped to a high-dimensional space
and the dot product is replaced by a non-linear kernel function. The mapping of
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the data to the high-dimensional space, where the data is linearly separable, can
then be computed directly by using an appropriate kernel function. Therefore, a
hyperplane in a high-dimensional space, which separates the data linearly, can be
calculated implicitly.

3.4.2 Multi-class SVMs

In this work, six expression classes are to be recognized, which is why a multi-class
classifier is needed. Multi-class SVMs handle this problem by combining several
binary SVMs, using either one-versus-one or one-versus-all as training strategy. In
this work, one-versus-one strategy is utilized, where for training purposes one class
is considered positive and one other class negative. To get a classification result, a
voting strategy is used, where for all pairs of classes the current feature vector is
assigned to one of the two classes and finally, the class that receives most votes is
considered the correct class. An illustration of one-versus-one multi-class SVMs is
displayed in Figure 3.10.

Figure 3.10: Example of a multi-class SVM. For each pair of classes, a separating
hyperplane is learned. To assign a new sample to a class, it is classified
by all pairs of classes, the votes/wins are counted and the sample is
assigned to the class with most votes/wins. The one-versus-one classi-
fication in this example happens as follows: the first pair of classes is
(A, B), the new sample lies on the ’B-side’ of the separating hyperplane
and therefore B gets one vote. The second pair of classes is (A, C) and
the new sample is classified as A. The last pair is (B, C) classifying the
sample as B. Summing up, A has one vote, B has two votes, C has zero
votes; therefore, the new sample is classified as B. Image taken from
[50].
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The goal of this thesis is to establish a multi-view facial expression recognition system
based on Active Appearance Models. The proposed system is illustrated in Fig. 4.1,
which shows the different processing steps. In this section, an overview of the system
is given, followed by a detailed description of each of the systems components.

4.1 Training step

Before the recognition of an unknown face image can be performed, several prelim-
inary steps have to be taken.

� Data generation
Since there is no expression database available that contains 2D facial expres-
sion images with a wide variety of head poses, a database containing 3D models
of expressive faces is used in this work. Therefore, 2D images have to be ex-
tracted from the 3D models by rotating them horizontally and extracting 2D
images and 2D landmark coordinates. This is done for angles from -90 to 90
degrees, with 15 degree steps.

� Data division
Data is divided into three equally sized sets: AAM training, SVM training and
testing, without overlapping subjects.

� AAM training
First, pose-dependent person-independent AAMs are trained: for each pose,
corresponding 2D images with landmark points across all expressions are used
for training the model. The training process is illustrated in 4.2. Pose is
determined by groundtruth label.
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Figure 4.1: Overview of the proposed system. Input is an unknown face image, on
which processing steps face acquisition, feature extraction and represen-
tation, and facial expression recognition are performed, outputting the
recognized expression class.
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Figure 4.2: Illustration of AAM training. Face images with landmark points are used
for training one AAM per pose.

� Face detection
Face detection is needed for the initialization of AAM fitting. In order to avoid
influences of face detection on expression recognition results, the groundtruth
scale and location from the input face are used in this work.

� Fitting SVM training data
AAM fitting is performed on every image in the SVM training set using a
pose-dependent AAM which is determined by groundtruth pose.

� Feature extraction
From the fitted AAM, shape and appearance information, as well as landmark
locations are received, on which appearance features are computed, resulting
in high-dimensional feature vectors.

� Feature selection
Dimensionality reduction is performed by running F-score feature selection.
Feature vectors of fitted SVM training data are used as input, together with
class labels. A list of relevant features is output and for each sample, a reduced
set of feature values according to the list is given.

� Scaling
All feature values are scaled to values between 0 to 1 and the ranges are saved
for later scaling of test data.

� SVM Training
For each pose, the relevant and scaled features from the SVM training set,
together with corresponding class labels for each sample are used as input for
the SVM training process, which is performed by LibSVM. Therefore, for each
pose, one linear multi-class SVM is trained, with which later, new test samples
are classified. The complete training process is displayed in Figure 4.3.
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Figure 4.3: Illustration of SVM training process. AAM fitting is performed on images
from SVM training set and features are extracted and used for training
one SVM classifier per pose.

4.2 Automatic facial expression analysis - frame-

work

In [21] and [51], a general framework for the automatic analysis of facial expressions
is presented, on which the system architecture in this work is based. This framework
is divided into the following tasks:

� face acquisition

� feature extraction and representation

� facial expression recognition

Given below is a detailed description of the different steps of the framework, including
the methods and tools used for the execution of each task. An illustration of the
proposed system is displayed in Figure 4.1.

4.2.1 Face acquisition

If any of the above problems are existent in given images, a normalization of the
faces might be required before analyzing them.

Before features can be extracted from a face, the face has to be found in the given
input image. By running a face detector on the image, locations and scales of the
found faces are specified, usually displayed by a rectangle. Additionally, for multi-
view expression recognition, it is also essential to know the degree of head rotation.
This is accomplished by using a pose estimator, which outputs the detected pose in
15-degree-steps.
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According to the detected pose an AAM is selected. For fitting the AAM to the new
image, a starting position has to be given, which specifies location and scale of the
AAM. This position is obtained from the face detector, and the AAM is initialized.

In this work, groundtruth information is used instead of face detection and pose
estimation, since it is preferred to have no influence of these methods on recognition
accuracy. Including face detection and pose estimation methods will be necessary
for using this system in real world applications.

4.2.2 Feature extraction and representation

Having initialized the AAM at the determined starting position, fitting is performed
using the simultaneous inverse compositional algorithm as described in section 3.1.2.
After the fitting has converged, several features are extracted from the fitted AAM,
which are: facial landmark coordinates, shape parameters and appearance parame-
ters.

The 83 extracted facial landmark points include points on the face outline, and
points around eyes, eyebrows, nose and mouth. For normalization, the shape is
aligned using similarity transform, before 2D coordinates of landmark points are
saved, resulting in a 166-dimensional feature vector for each face. The number of
shape parameters varies for different poses, lying at around 55, while the number of
appearance parameters is around 250.

Figure 4.4: Example showing circles around facial landmark points for frontal poses
(left image) and side poses (right image). Circles represent SIFT key-
points.

Keypoints for extracting appearance features are specified by selecting a subset of the
extracted landmark points, containing only points at locations which are considered
relevant for facial expressions. Therefore, points on the face outline are not used.
Different subsets are used for different poses. For frontal poses (0-30 degrees) all
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landmark points except those on the face outline are used, resulting in 68 points.
For side poses (45-90 degrees) only points lying on the visible side of the face are
used, overall 36 points. An example displaying the selected points for frontal and
side poses is given in Figure 4.4.

SIFT descriptors (see section 3.2.1) are computed at circluar regions with a diameter
of 15 pixels around the obtained keypoints. An illustration is given in Figure 4.4. At
each keypoint, 128 descriptors are extracted, resulting in a 8704-dimensional feature
vector for frontal poses and a 4608-dimensional vector for side poses.

A second method applied for extracting appearance features is DCT (see section
3.2.2), which uses the same keypoints as SIFT. An area of size 64 × 64 pixels around
each keypoint (see Figure 4.5) is split into 4 blocks of 32 × 32 pixels, and for each
block the first 20 coefficients are saved, resulting in 80 coefficients per keypoint.
Concatenating these coefficients produces 5440-dimensional (frontal), respectively
2880-dimensional (side) feature vectors.

Figure 4.5: Example showing regions around facial landmark points for frontal poses
(left image) and side poses (right image) from which DCT features are
extracted. For visibility reasons only a part of the used points is dis-
played.

To identify features achieving the highest recognition accuracy, extensive tests are
performed (see section 5).

Since it is assumed that information captured by shape features is different from
information captured by appearance features, it is proposed to combine these two
types of features for further improvement of recognition accuracy.

Therefore, shape feature vectors and appearance feature vectors are concatenated.
Combinations tested are: shape coordinates + SIFT descriptors, and shape coor-
dinates + DCT features. Shape and appearance parameters were not considered
for combinations, since recognition accuracy was much lower compared to shape
coordinates.
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Combined shape coordinates + SIFT descriptors produce a 8704 + 166 = 8870-
dimensional vector for frontal poses and a 4608 + 166 = 4774-dimensional vector
for side poses, while combined shape coordinates + DCT feature vectors have 5440
+ 166 = 5606 dimensions for frontal poses and 2880 + 166 = 3046 dimensions for
side poses.

In order to reduce dimensionality of these high-dimensional feature vectors and to
improve learnability, different feature selection methods were tested, namely PCA
[52], LDA [53], LPP [54] and F-score, but only F-score (explained in section 3.3)
showed an improvement in recognition accuracy for most feature types and therefore
is used in this work. Feature selection is first performed on the training set to
find relevant features. The indices of the selected features are saved, so that the
corresponding relevant features in the test set can be extracted easily at runtime.

4.2.3 Facial expression recognition

Features from the vectors, processed by F-score feature selection, are scaled to a
range from 0 to 1, in order to achieve better comparability of the features and to
avoid features with bigger values dominating others. It is important to apply the
same scaling method to both training and test data to produce meaningful results.

The scaled feature vectors serve as input for a pose-dependent linear multi-class SVM
(described in section 3.4), which is selected according to pose estimation result (here:
groundtruth pose). For this classification step, LibSVM library [55] is used, which
offers many options for SVM classification, e.g. linear SVMs or SVMs with different
kernels. It also implements the F-score feature selection tool, which is utilized in
this work. For classification, linear SVMs are chosen, due to the facts, that using
non-linear kernel SVMs requires an extensive grid-search for kernel parameters and
that classifying high-dimensional feature vectors with kernel SVMs is much slower
than classification with linear SVMs.

Completing the recognition process, the SVM outputs the detected expression class,
which can be anger, disgust, fear, happiness, sadness or surprise.
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For validating the proposed system, extensive experiments were conducted. This
section describes the data used for experiments and the experimental setup. Then,
results of expression classification using a variety of features are presented.

5.1 Data

In [3], the Binghamton University 3D Facial Expression Database (BU-3DFE) is
introduced, which is one of the most commonly used databases for multi-view facial
expression recognition.

It contains 3D models of 100 persons with texture and 83 annotated landmark points
per model. Subjects in the database are of different age, ranging from 18 to 70
years, and a wide variety of ethnicities/races, including white, black, east-asian,
middle-east-asian, hispanic-latino and others. 56% of the subjects are female, 44%
male. Each subject shows 7 expressions, which are: neutral, anger, disgust, fear,
happiness, sadness and surprise. All subjects display all expressions except neutral
at four different levels of intensity from low to high. Consequently, for each subject
there are 25 3D models present, which results in an overall number of 2500 facial
expression models.

For the system presented in this thesis, 2D images of facial expressions, taken from
different view angles, are needed. Therefore, 3D models from the database are
rendered together with the texture using VTK (The Visualization Toolkit). The
models are rotated at yaw angle from -90 to +90 degrees in steps of 15 degrees.
For every step, an image together with the coordinates of the landmark points is
saved, resulting in 13 images per face model. After repeating this procedure for
every model from the database, 13 poses are available, each containing 2500 images
and 2500 sets of landmark points, which adds up to 32500 data elements (image +
landmarks). The extracted images have a resolution of 300 × 300 pixels.
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Examples of the database are shown in Fig. 5.1, 5.2 and 5.3.

Figure 5.1: Example of BU-3DFE data. Shown expressions from left to right are:
neutral, anger, disgust, fear, happiness, sadness, surprise.

Figure 5.2: Example of BU-3DFE data including landmark points.

Figure 5.3: Example subject from the BU-3DFE database showing different levels of
intensity for expression class happiness.

5.2 Experiment Setup

For every pose, following steps are performed:

� Data taken from the BU-3DFE database is divided into three sets of similar
size, two sets containing 33 subjects, one set containing 34 subjects. One set
is used for AAM training, one for SVM training and the last one for testing.
An AAM is trained using the according set, which contains 2D images and 2D
coordinates of facial landmark points.
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� Then, for every image of the current SVM training set, AAM fitting is per-
formed using the previously trained AAM. For initialization of the AAM fit-
ting, groundtruth information is used. After extracting shape and appearance
features for all images of the set, feature selection is performed and informa-
tion on relevant features is saved for later usage on the test set. After being
processed by feature selection, the data is scaled, and the scaling range is saved
for scaling the test set. Finally, the scaled SVM training set is used for training
a SVM to recognize six expression classes.

� Similar to the SVM training set, AAM fitting is done on the test set, initialized
at groundtruth location and scale. Features are extracted and the relevant
ones, determined by previous feature selection on the SVM training set, are
selected from the test set and scaled, utilizing the saved range data. This set is
then fed to the SVM, which computes the classification accuracy by comparing
the classification results with the provided groundtruth labels. Afterwards,
statistical data is extracted, e.g. confusion matrices or recognition accuracies
for expressions at different intensity levels.

In order to validate the experiments, all possible combinations of set-arrangements
are processed, altogether six runs, and the results are averaged.

5.3 Results

Many results were produced, utilizing AAM landmark coordinates, AAM shape and
appearance parameters, SIFT and DCT appearance descriptors, as well as combi-
nations of AAM features with SIFT/DCT features for classification. In this section,
average recognition accuracies for different features are presented. Results in the
different sections are presented in two ways: first, for each expression, the average
accuracy over all poses is presented and secondly, for each pose, the average accuracy
over all expressions is shown, together with the overall average accuracy. Addition-
ally, the influence of intensity levels on recognition accuracy has been examined and
is also presented.

5.3.1 AAM features

From an AAM, which is fitted to an unknown face, information about that face
can be extracted, e.g. 2D-coordinates of landmark points, shape parameters and
appearance parameters. Landmark coordinates are normalized and will be called
shape coordinates from now on. For each face, there are 83 landmark points, which
means that the vector containing shape coordinates has 166 dimensions.

In this section, recognition accuracies of classification using shape coordinates (sc),
shape parameters (sp) and appearance parameters (ap) as features are compared.
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Expression
Shape

coordinates
Shape

parameters
Appearance
parameters

Anger 70,1 47,1 62,4
Disgust 68,4 49,6 57,8

Fear 57,7 38,1 46,6
Happiness 72,8 58,7 63,8
Sadness 67,7 49,4 58,7
Surprise 80,8 67,2 72,8

Overall 69,6 51,7 60,4

Table 5.1: Recognition accuracies for different expressions, averaged over all poses
for different types of features extracted from AAM.

Pose
Shape

coordinates
Shape

parameters
Appearance
parameters

90l 69,6 43,1 54,0
75l 70,7 49,2 58,8
60l 71,3 50,4 61,6
45l 71,0 55,0 62,4
30l 69,9 55,0 62,3
15l 68,7 56,0 63,9

frontal 67,0 54,4 61,5
15r 67,9 48,4 61,0
30r 69,3 56,8 63,6
45r 69,3 55,0 61,7
60r 69,6 54,0 61,1
75r 69,6 47,4 59,2
90r 70,6 47,6 53,9

Overall 69,6 51,7 60,4

Table 5.2: Recognition accuracy for different poses, averaged over all emotions for
different types of features extracted from AAM; l = left, r = right, num-
bers represent the degree of view rotation.

In Table 5.1 average recognition rates are presented for each expression. Surprise
expression achieves best results for all features, with 80,8% accuracy (sc), 67,2%
(sp) and 72,8% (ap). Worst results are obtained for expression fear, with 57,7%(sc),
38,1% (sp) and 46,6% (ap). The other expression classes achieve recognition rates
around 70% (sc), around 50% (sp) and around 60% (ap). Detailed results for differ-
ent poses are displayed in Table 5.2 and Fig. 5.4. For shape coordinates, the accuracy
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Figure 5.4: Illustration of recognition accuracies across different poses for features
extracted from the fitted AAM.

is quite consistent through all poses, it even slightly increases for side views, whereas
shape and appearance parameters show a considerable decrease of accuracy for poses
near profile view. Best results are obtained between 45l to 75l for shape coordinates
while for shape and appearance parameters highest rates are achieved at 15l and 30r,
where ’l’ and ’r’ stand for left, respectively right and the number in front indicates
the head rotation in degrees. Comparing classification results for different features,
it becomes apparent that sc performs best with an overall accuracy of nearly 70%,
followed by ap with around 60% and finally, sp with slightly above 50%.

5.3.2 SIFT/DCT features

Recent approaches to expression recognition use appearance features for classifica-
tion [5, 6, 41, 42], like e.g. SIFT, HoG [56] and LBP [57]. In this work, the use of
SIFT and DCT is explored, also in conjunction with F-score feature selection.

For DCT, a region around landmarks of size 64 × 64 pixels, divided into 4 blocks
of 32 × 32 pixels is chosen, and for each block the 20 highest rated coefficients are
extracted.
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Expression SIFT
FSEL
(SIFT)

DCT
FSEL
(DCT)

Anger 67,6 67,2 70,9 71,3
Disgust 68,6 69,4 67,9 70,7

Fear 53,7 55,1 54,5 55,7
Happiness 74,5 77,0 75,0 78,5
Sadness 66,4 69,5 67,6 71,7
Surprise 83,8 86,4 84,0 86,4

Overall 69,1 70,8 70,0 72,4

Table 5.3: Recognition accuracies for different expressions, averaged over all poses for
different types of appearance features, computed at automatically located
landmark points. FSEL means that feature selection was applied.

Pose SIFT
FSEL
(SIFT)

DCT
FSEL
(DCT)

90l 67,8 70,1 65,7 68,1
75l 66,3 68,2 70,6 72,6
60l 68,8 70,3 70,7 72,7
45l 69,0 70,5 71,1 73,4
30l 71,9 73,2 71,3 73,2
15l 71,0 72,3 71,4 73,5

frontal 69,5 70,5 71,9 73,6
15r 70,3 72,5 70,3 72,6
30r 71,5 73,5 73,2 75,5
45r 68,2 70,0 70,9 73,5
60r 70,0 70,9 69,7 73,0
75r 67,7 69,9 68,0 71,2
90r 66,6 68,2 65,0 68,0

Overall 69,1 70,8 70,0 72,4

Table 5.4: Recognition accuracy for different poses, averaged over all expressions for
different types of appearance features, computed at automatically located
landmark points. FSEL = feature selection.

In Table 5.3, the appearance features extracted from fitted AAM landmarks are used
for classification, and results are shown for original sets of appearance descriptors
as well as for sets processed by F-score feature selection method. We can see that
there is a constant increase of accuracy if feature selection is applied by up to 4%.
Again, surprise and fear show best, respectively worst results for all features, with
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Figure 5.5: Illustration of recognition accuracies across different poses for appearance
features extracted at automatically located landmark points. FSEL =
feature selection.

around 85% for surprise and around 55% for fear. Results for appearance features for
different poses are displayed in Table 5.4 and Fig. 5.5, showing a small advantage of
DCT over SIFT. While DCT accuracy drops for profile views and is higher for frontal
views, SIFT seems to be more stable over different poses, yet less accurate overall.
Highest accuracies are shown at poses 30l and 30r for SIFT, at frontal and 30r for
DCT and at 30r for DCT with feature selection. Although DCT has been introduced
many years ago, it shows superior results to SIFT in these experiments, with an
overall average of 70% (original DCT) and 72,4% (DCT with feature selection),
whereas 69,1% (original) and 70,8% (with feature selection) are achieved for SIFT
features. Remarkably, the results for shape coordinates from the previous section
are slightly better than those of SIFT features at expressions anger, fear and sadness
and better than DCT at anger.

Influence of AAM fitting errors on recognition

SIFT and DCT features are also extracted from regions around groundtruth land-
mark points in order to find out how big an influence of possible AAM fitting errors
on the classification results is. Recognition rates are shown in Table 5.5.
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Expression
GND
SIFT

FSEL
(GND
SIFT)

GND DCT
FSEL
(GND
DCT)

Anger 71,0 70,7 75,6 76,0
Disgust 68,5 69,6 70,3 72,1

Fear 55,2 56,2 57,2 58,6
Happiness 76,8 78,3 79,1 80,6
Sadness 70,8 73,5 74,1 76,2
Surprise 85,3 86,7 86,2 87,0

Overall 71,3 72,5 73,7 75,1

Table 5.5: Recognition accuracies for different expressions, averaged over all poses for
different types of appearance features, computed at groundtruth landmark
points (GND).

Pose
GND
SIFT

FSEL
(GND
SIFT)

GND DCT
FSEL
(GND
DCT)

90l 71,5 71,7 71,3 72,2
75l 71,3 72,4 71,9 74,1
60l 69,1 70,2 73,5 74,5
45l 70,2 71,5 73,7 75,2
30l 73,4 74,0 76,4 76,7
15l 71,7 73,2 76,2 77,8

frontal 71,9 72,5 75,4 77,2
15r 73,0 73,8 74,3 76,5
30r 73,5 74,8 75,8 77,7
45r 70,2 71,0 73,4 75,4
60r 71,1 72,7 73,2 74,0
75r 69,9 72,3 72,0 72,9
90r 69,5 72,4 71,2 71,5

Overall 71,3 72,5 73,7 75,1

Table 5.6: Recognition accuracies for different poses, averaged over all expressions for
different types of appearance features, computed at groundtruth landmark
points (GND).

Compared to appearance features from AAM landmarks, accuracy increases espe-
cially for expressions sadness (up to 6,5%) and anger (up to 5%), while improvements
on disgust, fear and surprise are smaller. Table 5.6 and Fig. 5.6 display classification
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results for different poses, showing that an increase of head rotation leads to a de-
crease of accuracy for DCT, similar to features extracted at automatically selected
landmark points. SIFT features show more stable results for profile poses. For both
DCT and SIFT, best results are shown at frontal views from 30l to 30r. Overall,
DCT features with feature selection show best results so far, with an average recog-
nition rate of 75,1%, followed by original DCT features (73,7%), SIFT features with
feature selection(72,5%) and original SIFT features (71,3%). Thus, the overall av-
erage results are decreased by up to 3,7% by misplaced landmarks through AAM
fitting errors.

Figure 5.6: Illustration of recognition accuracies across different poses for appearance
features extracted at groundtruth landmark points. FSEL = feature
selection.

5.3.3 Combination of features

It is further investigated whether or not recognition results can be improved by
combining different types of features. Therefore, shape coordinates obtained from
fitted AAMs are concatenated with appearance descriptors, which were computed
on these coordinates, to form a new feature vector. Results are also displayed for
feature vectors on which feature selection was performed. Compared to SIFT fea-
tures only, recognition rates for expressions increase constantly by around 1% when
using a combination of shape coordinates and SIFT features (see Table 5.7). An
improvement of up to 2,5% is observed for DCT features (original and with feature
selection). Classification results for combined features at different poses in Table 5.8
show the same characteristics as results for appearance features only. Compared to
that, overall average recognition rates improve by up to 2% to 74,1% at maximum
for shape coordinates + DCT with feature selection.
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Expression
Shape

coordinates
+ SIFT

FSEL
(Shape

coordinates
+ SIFT)

Shape
coordinates

+ DCT

FSEL
(Shape

coordinates
+ DCT)

Anger 69,2 69,3 73,4 74,0
Disgust 69,5 70,7 70,3 72,3

Fear 55,3 56,7 56,1 57,8
Happiness 75,8 78,2 77,1 80,3
Sadness 67,9 70,7 69,3 73,5
Surprise 84,5 86,4 85,0 86,8

Overall 70,4 72,0 71,9 74,1

Table 5.7: Recognition accuracies for different expressions, averaged over all
poses for combinations of shape coordinates with appearance features
(SIFT/DCT), FSEL = feature selection.

Pose
Shape

coordinates
+ SIFT

FSEL
(Shape

coordinates
+ SIFT)

Shape
coordinates

+ DCT

FSEL
(Shape

coordinates
+ DCT)

90l 69,6 71,3 68,9 71,3
75l 68,6 70,5 72,0 74,2
60l 70,1 71,5 72,5 74,1
45l 70,0 71,8 73,6 74,8
30l 72,5 74,2 72,8 74,8
15l 72,3 71,4 72,4 75,0

frontal 70,1 71,9 73,0 74,9
15r 71,4 73,3 72,7 74,9
30r 72,2 73,9 73,9 76,0
45r 69,2 71,0 73,0 75,2
60r 70,8 71,9 71,8 74,2
75r 69,2 71,5 70,2 72,8
90r 68,7 70,3 67,8 71,4

Overall 70,4 72,0 71,9 74,1

Table 5.8: Recognition accuracies for different poses, averaged over all expres-
sions for combinations of shape coordinates with appearance features
(SIFT/DCT), FSEL = feature selection.
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Figure 5.7: Illustration of recognition accuracies across different poses for combina-
tions of shape coordinates (ShC) with appearance features (SIFT/DCT),
FSEL = feature selection.

In Figure 5.7 recognition rates across different poses are illustrated. We can see
that the improvement through the application of feature selection is quite constant.
Displayed in Table 5.9 is a complete confusion matrix for expression classification
using a combination of shape coordinates and DCT features with feature selection.
Groundtruth expressions are shown on the left and recognized expressions on the
top. Most easily confused are following pairs of expressions: anger and sadness
(13,5% / 17,1%), anger and disgust (10,4% / 6,6%), fear and disgust (9,9% / 6,8%)
and fear and happiness (14,5% / 12,3%).

Anger Disgust Fear Happiness Sadness Surprise
Anger 74.0 6.6 3.9 1.4 13.5 0.6

Disgust 10.4 72.3 6.8 4.6 2.7 3.3
Fear 6.3 9.9 57.8 14.5 5.4 6.1

Happiness 1.8 4.3 12.3 80.3 0.6 0.7
Sadness 17.1 2.6 5.4 1.0 73.5 0.5
Surprise 1.7 3.1 6.0 1.3 1.0 86.8

Table 5.9: Complete confusion matrix for combination of shape coordinates with
DCT. Feature selection was applied.
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5.3.4 Influence of intensity on recognition

In this section, recognition rates are displayed for each of the four intensity levels for
combinations of shape and appearance features. Experimental setup and data is the
same as above. The shown percentages are average accuracies over all expressions
and poses.

Shape co-
ordinates
+ SIFT

FSelect
(Shape co-
ordinates
+ SIFT)

Shape co-
ordinates
+ DCT

FSelect
(Shape co-
ordinates
+ DCT)

Intensity
level 1

61,0 62,8 62,2 64,2

Intensity
level 2

70,7 72,3 72,1 74,7

Intensity
level 3

73,8 75,2 75,7 77,8

Intensity
level 4

76,0 77,8 77,6 79,7

Table 5.10: Recognition rates for classification of data containing expressions at dif-
ferent levels of intensity. Averaged over all expressions and poses.

As expected, an increase in the intensity level leads to an increase of accuracy as can
be seen in Table 5.10. Already from lowest to second lowest level, a big improvement
is shown (about 10%), while from second lowest to highest level, the increase of
accuracy is not as significant (about 5% from level 2 to level 4).

Figure 5.8 shows recognition rates across different poses for different intensity levels,
indicating that differences between accuracies of different intensity levels remain
quite constant across changing poses.

In initial experiments, intensity-specific classifiers were trained, but no improvement
of accuracy was gained.
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Figure 5.8: Illustration of accuracies for different poses for combination of shape
coordinates and DCT features with feature selection at different intensity
levels.
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6. Conclusion

In this thesis, a multi-view facial expression recognition system was developed with
the capability of being applied to real-world situations. Therefore, facial landmarks
are found automatically on faces showing pose variations up to profile view. In
order to handle these tasks, pose-dependent Active Appearance Models and pose-
dependent Support Vector Machines are trained. Pose-dependent means, that for
each pose, one AAM/SVM is trained. The appropriate AAM/SVM for a new in-
put image is determined by a pose estimator. For a given input image, a pose-
dependent AAM is initialized at a location obtained from a face detector. In this
work, groundtruth information was used in order not to influence the recognition
results by face detection or pose estimation. The AAM is then fitted to the face,
providing locations of facial landmarks. On these landmarks, local appearance fea-
tures (SIFT and DCT) are computed. The extracted features form a feature vector,
on which feature selection is performed. Then, this vector is passed to a previously
trained pose-dependent SVM, which outputs the recognized expression class.

For extensive experimental evaluation, the BU-3DFE database was used to construct
sets of 2D images from 100 subjects, containing six expression classes at 13 different
poses. Classification results for different features and combinations of features were
analyzed, and the use of feature selection methods was explored. It was shown,
that for features extracted from the fitted AAM, normalized landmark coordinates
(69,6%) achieve much higher recognition rates than shape parameters (51,7%) and
appearance parameters (60,4%). A comparison of SIFT and DCT appearance fea-
tures indicated higher accuracy for DCT features (reduced DCT: 72,4%; reduced
SIFT: 70,8%). The effect of AAM fitting errors, leading to misplacements of fa-
cial landmarks, on recognition accuracy was investigated. Therefore, results for
appearance features extracted at automatically located landmarks were compared
to features extracted at groundtruth landmarks, with the latter showing an improve-
ment of up to 2,2% for SIFT and up to 3,7% for DCT features. By combining shape
and appearance features, recognition accuracy increased in comparison to the use
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of single feature types. Best results for features extracted at automatically located
landmark points were achieved by a combination of shape coordinates and DCT
features with feature selection at an overall average recognition rate of 74,1%.

The influence of the displayed expression intensity level on recognition accuracy was
also studied, showing a recognition rate on lowest intensity level (around 65% for
shape coordinates + DCT) much lower than on highest intensity level (around 80%).
The improvement from lowest to second lowest intensity was already quite big, with
an increase of accuracy by about 10%.

There are several issues for future work. The addition of a state-of-the-art face-
detector and a pose-estimator to the system is necessary to utilize the system in
real-world applications. Additional landmark points, e.g. at nasolabial furrows,
possibly carry information, which is relevant for expression recognition, and should
be considered to be utilized. Also, the use of different classifiers, as well as varying
the size of training and test sets could be interesting.
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