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Abstract

This work presents a machine learning approach for facial image-based age estimation.
The idea is to first extract age relevant texture and shape features from a set of images
and use them in combination with the subject’s age to learn a model of the human
aging process. The classification is done in two steps. At first a classification between
youths and adults is done. In the second step the exact age is estimated by a more
specific classifier based on the result of the first step. Extensive experiments on the FG-
NET aging database are conducted using the leave one person out evaluation scheme.
Modifications regarding the feature extraction and taking a soft decision in the first step
of the classification are found to improve the performance, leading to a mean absolute
error of 4.77 years, which is the lowest mean absolute error reported on the FG-NET
aging database.
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1. Introduction

1.1. Motivation

In the area of computerized analysis of facial images for recognition, ethnicity classifi-
cation, gender recognition, etc. the age estimation is a barely explored part. However
recently the interest in this subject has significantly increased, because it has many
practical applications. For example there are age limitations for driving a car, buying
alcohol, cigarettes, films, video games, etc. which should be obeyed, but the human skills
of age estimation are very limited. So a computer system, which supports the respon-
sible persons would be helpful. It is well known that the human-computer interaction
varies for different age groups, thus a system which automatically adapts its interface to
the age of the current user would clear this problem. The knowledge about human age
could also be used to even improve other areas of computational image analysis like face
recognition, by simulating the aging process for outdated images.

The objective of this work was to get an overview of the current methods and to
develop our own solution based on these ideas. The approach of Khoa Luu et al. [29]
has been benefited during the study and became the starting point of this work.

1.2. Related Work

Caused by the growing interest a lot of papers have been published over the last years,
which deal with the problem of age estimation. They outline some different and inter-
esting approaches.

The work of Narayanan Ramanathan et al. [38] provides a good introduction to the
topic. They examine the problem from a more wide point of view, namely the analy-
sis of the basics of human face aging and what has been done there so far. The first
steps in understanding the morphological changes associated with growth in biological
forms were made by D’arcy Thompsons’s study of morphogenesis (1917) [47]. Based on
Thompson’s work, Shaw et al. [43] studied facial growth as an event perception problem
and discovered the Cardioidal strain and the Affine Shear transformation to describe
facial growth. Further Pittenger and Shaw [35] enhanced this approach and distinguish
the importance of three force configurations, named: the shear, strain and radial forces
and identified the cardioidal strain forces (containing the radial components) to be the
most important one. Todd et al. [50] developed the ’revised’ cardioidal strain transfor-
mation model, by comparing the human head growth with the modeling of a fluid-filled
spherical object with pressure, see Figure 1.1. Finally Mark et al. [30] hypothesized
that the information associated with any recognizable style change is contained in geo-
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metric invariants associated with the event. In reference to facial growth they identified
three geometric invariants, whose attributes have to be preserved across transformation.
Narayanan Ramanathan et al. summarized that in computer vision the facial aging
problem can be categorized in Shape vs. Texture, Feature selection and Factors. After
this they discussed a couple of age estimation techniques, like the classification based
on anthropometry of the face by Kwon and Lobo [21], the Active Appearance Model
(AAM) by Lanitis et al. [25] [23] and the AGES method working with so called aging
pattern by Geng et al. [17]. In the next chapter they listed a few computational model
for age progression, developed by Burt and Perrets’s [5], Tiddeman et al. [49] [48], Ra-
manathan and Chellappa [36] [37] and Suo et al. [45]. Finally they gave a survey about
existing aging databases, which are: MORPH [1] [39], FG-NET [13] and FERET [34].

Figure 1.1.: Pressure behavior model of a fluid-filled spherical object left and the result-
ing ’revised’ cardioidal strain model right [50].

Xin Geng et al. [17] developed an age estimation method named AGES (AGing
pattErn Subspace), based on the following assumptions:

1. The aging progress is uncontrollable.

2. Every person ages differently.

3. The aging progress must obey the order of time.

Therefore they introduced the so called aging patterns, as a sequence of personal facial
images sorted in chronological order. The images are represented by their feature vector,
extracted by the Appearance Model described in [10]. Instead of using isolated pictures
for training, a subspace of the aging patterns is learned, using Principal Component
Analysis (PCA). A big problem was the lack of complete aging patterns, which led to
highly incomplete training data. To deal with this they developed an iterative learning
algorithm, which is able to estimate a part of the missing personal aging pattern with
each iteration, using the global aging pattern model learned so far. The updated personal
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model is then used to refine the global one. When estimating the age, the feature vector
of the image is calculated and used to find a suitable aging pattern in the subspace.
This is done, by searching for the projection in the subspace achieving the smallest
reconstruction error of the feature vector, which is illustrated in Figure 1.2. In the
second step the proper position in the determined aging pattern is indicated by the
minimal reconstruction error.

Figure 1.2.: Age estimation steps, missing parts are marked by ’m’ [17].

Based on their earlier work [17], Xin Geng and Zhi-Hua Zhou [18] introduced an
improved version of AGES, named AGESLDA. They additionally applied the Linear
Discriminant Analysis (LDA) to the feature vectors extracted by the Appearance Model,
to deal with expression variations, pose and illumination. They also built a two-layer
age estimation, by first using AGES to classify the test samples into the three most
consistent age ranges. Then they used three separately trained subspaces to assign the
exact age.

Karl Ricanek et al. [40] used the Active Appearance Model (AAM) described in [46],
to locate relevant aging features. In the next step they applied Least Angle Regression
(LAR) by Efron et al. [11] to identify the most important features. The reduced feature
vectors of the training set are then used for Support Vector Regression (SVR) by Vapnik
[51]. While training, the age estimation acts as a feedback for the LAR. They also tried
to incorporate information like race and gender into their training, but got the best
performance, when only using the results of the LAR.

Feng Gao and Haizhou Ai [14] collected thousands of frontal or near frontal face images
and labeled them with a subjective age. The training samples were divided into the
following four age groups: 0-1, 2-16, 17-50 and 50+. To get a descriptor vector they used
Gabor features by C. Liu et al. [26]. Then they utilized the linear discriminant analysis
(LDA) technique [4], to build the classifier. They further improved it by implementing
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a Fuzzy LDA version, to cope with the fact that the classification into the age groups
is too strict in the border areas. For evaluation they also tried different features like
LBP and other classification methods like SVM, arriving at the conclusion that Gabor
features combined with LDA is the best choice.

Khoa Luu et al. [29] used Active Appearance Model (AAM) to extract a combined
feature vector of the facial images. The classifier is divided into two main steps. First
a binary classifier f is build by SVMs to distinguish between youths (0-20) and adults
(21-69). In the second step a growth and development function f1 and an adult aging
function f2 are separately trained with Support Vector Regression (SVR) [27], on youth
and adult datasets, respectively. When classifying, the test image is first assigned to one
of the two age groups and then handed to the corresponding age function, to estimate
the exact age. Based on this work Khoa Luu et al. modified the classifier construction
by adding a supervised spectral regression after the extraction of the combined AAM
feature vector [28]. It should improve the correlation information among the feature
vectors of the same class and decrease it for different classes. Also it should help to
reduce the dimension of the feature vector.

Based on a recent work, Sethuram et al. [41] improved their analysis-synthesis face-
model approach, which is based on Active Appearance Models (AAM). They used Support
Vector Regression (SVR) to learn age-based properties of the AAM parameters and
gradient-regression-based AAMs, to represent the texture information. After this a
Monte-Carlo simulation is run, which generates random faces, which are then classified
based on the age estimated by the SVR, to get the feature information learned by the
support vectors. Finally bins are created and averaged for each age, to get a table of
AAM parameters, that can be used to morph a face to a desired age.

Young H. Kwon and Niels da Vitorie Lobo [21] developed an algorithm based on ratios
of different facial features and a wrinkle analysis, including the automatic extraction of
the required features. Their approach only needs a manually initialized center position
of the head to fit an oval around the face. With this information initial position of
iris, mouth and nose are set and optimized with the image potential technique. This
information allows the computation of different ratios, which they discussed regarding
to their reliability and robustness. For the wrinkle analysis they searched in different
regions, like eyes and forehead, by dropping randomly oriented snakelets [20] to these
regions. For the classification, the ratios are used to differentiate between baby and non
baby and the wrinkles between adults and seniors. So for example a person, who is not
a baby and has no wrinkles is an adult.

Sethuram et al. [42] researched the AAM performance related to facial aging. They
compared the performance of building one general model and having a model for every
ethnicity, gender and age group combination. For the evaluation they used the two
ethnic groups American and African and the two age groups 18-45 and 46-65 years.
Further the FaceVACS c©SDK [7], a commercial face recognition system was used to
generate a match score, which showed that the performance of the individual models
was consistently better.
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1.3. Aging Databases

There are a few publicly available databases which have facial images with age informa-
tion. The three best known are used in many works and have already been mentioned
in the related work Section 1.2. In the following we provide some basic description for
each of them.

FG-NET: The database FGnet (Face and Gesture Recognition Research Network)
was built by the European work group on face and gesture recognition. The database
contains on average 12 pictures of varying ages between 0 and 69, for each of its 82
subjects. Altogether there are a mixture of 1002 color and greyscale images, which
were taken in totally uncontrolled environments. Each was manually annotated with 68
landmark points. In addition there is a data file for every image, containing type, quality,
size of the image and information about the subject such as age, gender, spectacles, hat,
mustache, beard and pose. Some example images with landmark annotations are shown
in Figure 1.3.

Figure 1.3.: Some images of the FG-NET database with landmarks

MORPH: The database was collected by the Face Aging Group and is intended for re-
searchers interested in face-based biometrics. The database consists of two parts Album
1 and Album2. Album 1 contains 1690 greyscale images of 631 subjects between 15 and
68 years old. For every sample there is additional information about race, gender, facial
hair, glasses, age and also 4 coordinates for the position of the eyes. Album 2 consists
of 55608 images of 13673 subjects between 16 and 99 years. Information about race,
gender, facial hair, glasses and age is available.
CVL: The Center for Vital Longevity (CVL) database [33] was created at the University
of Michigan by Meredith Minear and Denise Park. The database can be divided into
three categories. First, there is a set of 308 profile images. The next category consists
of 580 neutral frontal face color images and an additional 159 greyscale pictures. The
last one is divided into the emotions angry, annoyed, disgusted, grumpy, happy, sad, and
surprised and contains a total of 258 images. The subjects belong to different races and
are in the age range of 18 to 94. The gender and the three categories are given by the
folder structure and the age is part of the filename.
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1.4. Approach

An Active Appearance Model (AAM) is used to extract the appearance features, which
is able to describe the shape and texture of an object with a set of parameters, once
it has been trained for this type of object. So for this work the model is trained on
a set of facial images. For learning the human aging process and the following age
estimation, the popular machine learning method Support Vector Machine (SVM) is
used. The estimation is done in two steps. At first a binary classification between
youths and adults is done and in a second step the exact age is estimated by a more
specific classifier based on the result of the first step.

Further some modifications are made to the age estimation system. Instead of the
AAM’s texture representation, Discrete Cosine Transform (DCT) is used to extract the
texture appearance features. The first classification step between youths and adults is
dropped, having only one global classifier for the whole age range. Instead of dropping
the first classification step it is also tried to soften the classification by treating close
decisions separately.

1.5. Outline

Starting in the Sections 2.1 and 2.2 the two basically used techniques Active Appearance
Models (AAM) for feature extraction and Support Vector Machines (SVM) for machine
learning are introduced. The intention is to provide a brief insight into the theoretical
background, which is relevant for later application. Details about the feature extraction
using AAM and the construction of the age estimation system including the implemen-
tation are provided in Section 3.

In Section 4.1 several tests were run and evaluated with different performance mea-
sures, commonly used in the context of age estimation. It appears that the classifier
system can compete with other currently available age estimation techniques. Several
modifications to further improve the prediction accuracy are introduced and evaluated
in Section 4.2. A performance comparison to other approaches is done in Section 4.3.
Finally the real life application of AAM and the consequences for the age estimation are
discussed in Section 4.4.
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2. Methodology

2.1. Active Appearance Models

Active Appearance Models (AAM) [46] rely on the so called Active Shape Models (ASM)
[3], where the Principal Component Analysis (PCA) is used to get a statistical model of
appearance for an object in a lower dimensional space. To create this statistical model
an annotated training set of images is needed, where the points describe the shape of
the object. After training, any shape s can be approximated by a set of parameters bs
using the formula s = s + Psbs, where s is the calculated mean shape and Ps is the
learned orthogonal modes of variation. The accuracy of this approximation depends
on the number of kept eigenvectors, which is normally determined by the proportion
of variance in the training set that should be described by the model. When fitting
the shape, starting with the mean shape, the surface of each point is reviewed to find
the best new position. One possible measurement for the quality of this position is the
strongest nearby edge. Then the pose and shape parameters are updated by varying bs
in the learned ranges to get a new plausible shape approximation. This is repeated until
convergence is reached, which is declared when an iteration step leads to no significant
change of the parameters.

AAM now also include the texture of the object. The common problem that the pose
of the object leads to texture changes, which dominate all other texture information, is
solved by using the calculated mean shape and a triangulation algorithm, to warp the
object into a shape free version (see Figure 2.1). After normalizing the texture in the
shape area, PCA is used to get a statistical model of texture variation. So instead of the
shape in ASM any texture t can be approximated by t = t + Ptbt, where t is the mean
color level, Pt is the orthogonal modes of variation and bt is the color level parameters.
When synthesizing an object the parameters of bt are first used to generate the shape
free texture and in a second step bs is used to warp the texture to match the shape.

The last step is to combine the shape and texture, which further reduces the dimension.
For example in a facial image a big grin will not only variate the shape of the mouth, it
will also cause the teeth to appear in the texture. To get a combined model the first step
is to investigate the relationship between bs and bt. This is done with a weight matrix
Ws, which is estimated during the training by displacing the shape from the optimum
and observing the changes of the texture. So for every image a vector b =

(
Wsbs
bt

)
can

be created, which concatenates bs and bt. Once again PCA is used for the dimension
reduction leading to a final model b = Qbc, where Q is the matrix of eigenvectors and
bc is the combined vector of appearance parameters. Shape and texture can now be
expressed by the formulas s = s+ PsWsQsbc and t = t+ PtWtQtbc.
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Figure 2.1.: Triangles used for warping (left) and shape free image (right)

2.2. Support Vector Machine

A Support Vector Machine (SVM) is a supervised learning method, which uses so called
support vectors to build a model for classification or regression. The basic algorithm
is described in V. Vapnik and A. Lerner’s work [52]. The aim is to find an optimal
hyperplane to separate two classes. In this case optimal means that besides just providing
the lowest separation error, it is also as good as possible regarding generalization. This
can be illustrated with a simple example, shown in Figure 2.2. The line H1 separates the
two classes with no error, but the margin between the point clouds and the hyperplane
is very small. In contrast H2 is also a separation with no error, but provides the greatest
possible margin and thus promises the best generalization.

Figure 2.2.: Example for an optimal hyperplane

Let P be a linear separable two class problem and d = {(xi, ci)|xi ∈ Rm, ci ∈ {−1,+1}}
one m dimensional vector of the training set D with |D| = n. To find the optimal
hyperplane for P , an optimization problem has to be constructed. The basic concept
is that two parallel hyperplanes h1, h2 are needed, which maximize the margin between
the two classes. First of all any hyperplane can be written as a set of points x satisfying
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the equation 〈w, x〉+ b = 0, where w is the normal vector and 〈·, ·〉 is the scalar product.
To obtain a canonical form, the parameters w and b are scaled in a way that for each
point | 〈w, x〉 + b| ≥ 1 is fulfilled. Thereby the points closest to the hyperplane are the
ones, for which | 〈w, x〉 + b| = 1 applies and hence describe the location of h1 and h2.
Because of this, these points are the so called support vectors and give the procedure
its name. The distance between h1 and h2 is 2

‖w‖ , which should be maximized and thus

leads to the basic optimization problem to minimize ‖w‖:

min
w,b
‖w‖ subject to ci(〈w, xi〉+ b) ≥ 1, ∀i.

Because this optimization problem depends on ‖w‖ it is difficult to solve. The substitu-
tion of ‖w‖ with 1

2 ‖w‖
2 leads to the following easier primal form:

min
w,b

1
2 ‖w‖

2 subject to ci(〈w, xi〉+ b) ≥ 1, ∀i.

The complexity of the constraints could also be reduced and leads to the following dual
form:

min
αi

n∑
i=1

αi − 1
2

∑
i,j
αiαjcicj 〈w, xi〉 subject to

n∑
i=1

αici = 0, w =
∑
i
αicixi, ∀αi ≥ 0.

2.2.1. The Kernel Trick

The basic version of SVMs only allows linear classification, which can be changed by
applying a so called kernel trick. The non-linear separable data is transformed into a
higher dimensional space H using a mapping function ψ, in which the separation can be
described linearly (Figure 2.3). Because H is often very high-dimensional, the calculation
of the scalar products can be very complex. Now the kernel trick comes into play. It is
based on the observation that ψ only appears in scalar products and can thus be replaced
by a function k, which behaves like a scalar product and keeps the computational costs
low. k is called the kernel function and it applies k(xi, xj) = 〈ψ(xi), ψ(xj)〉. Some
commonly used kernel functions are:

• Polynomial: k(xi, xj) = (xTi xj + 1)d

• Radial: k(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0

• Gaussian Radial: k(xi, xj) = exp(−‖xi−xj‖
2

2σ2 )
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Figure 2.3.: Example for the transformation into a higher dimensional space. Separa-
tion in 2D space (left) is quite complex and can be described linearly after
transformation into 3D space (right).

2.2.2. Soft Margin

The Soft Margin extension was introduced by C. Cortes and V. Vapnik [8]. It deals
with the problem that outliers and random noise can easily lead the SVM to learn a
hyperplane with a small margin between the classes and thus destroy the basic objective
to build a general model. To prevent this, the basic optimization problem was extended
as follows:

min
w,b,ξ

1
2 ‖w‖

2 + C
n∑
i=1

ξi subject to ci(〈w, xi〉+ b) ≥ 1− ξi, ∀i, ξi ≥ 0.

Where ξi measures the miss-classification of sample xi and is called slack variable. So the
new version searches for a hyperplane, which separates the examples as well as possible,
but tolerates miss-classifications in order to maximize the margin between the classes.
The weight between these two measures is controlled by the parameter C.

2.2.3. Regression (ε-SVR)

The Support Vector Regression (SVR) was introduced by V. Vapnik et al. [9] shortly
after the soft margin extension. Its objective is also related, namely to find a flatter
hyperplane. For this purpose, all training samples with an error less than ε are ignored.
Hence deviations of samples near the hyperplane are not included into the loss function.
So the training set is actually reduced, leading to a new basic optimization problem:

min
w,b

1
2 ‖w‖

2 subject to


ci − 〈w, xi〉 − b ≤ ε
〈w, xi〉+ b− ci ≤ ε
∀i ≥ 0

To combine the SVR with the soft margin extension, two slack variables ξi and ξ∗i are
introduced. The modified basic optimization problem is:
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min
w,b,ξ,ξ∗

1
2 ‖w‖

2 + C
n∑
i=1

(ξi + ξ∗i ) subject to


ci − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉 − ci ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

∀i ≥ 0

2.2.4. Multiclass Classification

The problem of building a SVM with more than two classes is normally solved by dividing
it into multiple binary problems. There are two common methods for building such a
classifier:

1. The one-versus-all method trains one classifier for each label li, which separates
between li and all other classes. A new sample is assigned to the label with the
highest classifier output.

2. The one-versus-one method trains one classifier for each pair of labels and the
sample is assigned to the label with the most votes.
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3. Implementation

3.1. AAM Building

For the AAM part of the work the AAM-API of Mikkel B. Stegmann [44] is used.
The AAMs are trained on the FG-NET database, which provides a point-file with 68
landmarks for each of its 1002 images. In the first step it is necessary to convert these
files, so that the AAM-API can handle them.

Configuration: The annotations shown in Figure 1.3 describe the shapes of the dif-
ferent face parts. In order to get the texture of the whole face, the AAM builder is
configured to use the convex hull of these individual shapes (see Figure 2.1). The trun-
cation level for the details represented in the shape, texture and the combined model
is set to 95%. This means that the resulting models describe 95% of the variation ap-
pearing in the training set. For better generalization, especially for fitting the model
without ground truth, it is important not to choose a too high truncation level. Finally
the model size is halved leading to a mean texture area of about 13600 pixels, which still
provides a detailed face representation and reduces the background noise of the pictures.
For the whole configuration file, see appendix A

To get an impression what an AAM of the FG-NET looks like, the whole database was
used to build the model. The combined feature vector bc of the resulting AAM is only of
size 48, which shows the power of the dimension reduction. The AAM-API orders the
features by the percentage of variation they describe, of which the first 3 features of bc
already cover over 50%. A detailed overview, which also includes the shape and texture
vector is listed in the model documentation file in appendix A.

For visualization the API allows the creation of synthesized images of the changes an
individual feature causes. The result of doing this with the first five combined features
in both directions of their learned standard deviation is displayed in Figure 3.1. It shows
that the first four features mainly cover head pose and lighting variation, which explains
their huge variation content. In contrast the fifth vector seems to contain a lot of age
information, justifying the decision to use AAM features for age estimation.

3.2. AAM Fitting

Probably the most challenging part of AAM is fitting the model on an unseen image.
For the FG-NET database the landmarks can be used to initialize the fitting. So in
this case the position and size of the face is already known, which makes the fitting a
lot easier. Because the focus of our work is the age estimation, the initialization of the
AAM will be based on these landmark points, when the performance of the age classifier
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Figure 3.1.: Variation of the first five combined features in both directions, starting from
the mean face, which is always displayed in the middle. AAM trained on
the FG-NET database.
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is measured. An approach for a full automatic system will be discussed in Section 4.4.
Independent from the initialization method the following steps are performed for every
iteration.

1. Calculate the current error vector δgi = gs− gm, where gs is the normalized image
sample at the currently estimated shape and gm the normalized grey-levels of the
synthesized face.

2. Calculate the current error Ei = |δgi|2, using the Mahalanobis distance.

3. Compute the next displacement δbc = Aδgi. A is the regression matrix, which is
learned during the AAM training. It describes the parameter variations, which
normally lead to convergence, which is important for an efficient iteration.

4. Calculate the new combined vector bci+1 = bci − kδbc, starting with k = 1.

5. Calculate the error vector δgi+1 for the new prediction bci+1.

6. If the new error Ei+1 < Ei accept the new estimation.

7. Otherwise go to step 4 and try a smaller step (k = 1.5, 0.5, 0.25, ...).

8. Repeat until the error is not further reduced or the maximum number of iterations
is reached.

For visualization some pictures of the FG-NET database and their ground truth initial-
ized fitting results are shown in Figure 3.2. The synthesized face is astonishingly close
to the original, even recreating fine details like wrinkles, which is clearly visible in the
last example of the second row.

Figure 3.2.: Some fitting results, AAM trained on the FG-NET database
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3.3. Age Estimation

The basic construction of the age classifier is similar to the one in the work of Khoa
Luu et al. [29]. The combined feature vector bc of the AAM is used for a two step SVM
classification. To use bc in SVM it is important to first scale the parameters of the
feature vectors to a fixed range, for example {-1,1}, to avoid that the parameters with
huge ranges dominate the ones with smaller ones. The value with the biggest magnitude
is determined for each parameter and is used as the scaling factor. In the first step,
Support Vector Classification (SVC) is used for a binary classification between youths
(under 21) and adults (21 and above), in future referred as the the youth/adult classifier.
This border is chosen based on research on the anthropometry of the human face aging
[2, 12, 32]. In summary in earlier years the growth of the face mainly causes changes in
its shape. Approximately the age of 20 is a turning point from where mainly the texture
changes as a consequence of wrinkles and sagging. In the second step, Support Vector
Regression (SVR) is used for two separate classifiers, called the youth classifier and the
adult classifier, to determine the specific age (see Figure 3.3). So all together three
classifiers are trained, using the respective training data. For the youth/adult classifier
all training images are used, whereas for the youth classifier only the youth faces and
accordingly for the adult classifier only the adult faces are used.

Figure 3.3.: The age classifier

For both, SVC and SVR the well known LIBSVM library [6] is used. All SVMs are
configured to use a Gaussian kernel. Regarding the parameters, the stopping criteria ε
is set to 0.001, whereas for SVC C and γ, and for SVR C, γ and p are optimized using
a five fold cross validation.

In conclusion for building up the classifier the following procedure is processed:

1. Build an AAM on the training set.
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2. Extract the feature vectors for all training images.

3. Scale the parameters of the feature vectors to {-1,1}.

4. Train the three classifiers using the respective data and optimize the SVM param-
eters on the training set.

And the estimation is done as follows:

1. Extract the feature vectors for all testing images.

2. Scale the parameters of the feature vectors with the same factors as the ones for
training.

3. Finally estimate the age by applying the two step classification process.
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4. Experiments

4.1. Evaluation

There are two common performance measures for age estimation, the Mean Absolute
Error (MAE) and the Cumulative Score (SC). As the name implies, MAE is the mean
difference of the predicted age and the real age and can therefore be calculated with the
formula:

MAE =

∑n
i=0 |EAi −RAi|

n
, (4.1)

where EAi is the estimated and RAi is the real age for the ith of n tested samples.
The Cumulative Score of an age difference d describes the percentage of estimations

which have an estimation error of less than or equal to d years. This can also be described
by the formula:

CS(d) =
N(|EAi −RAi|)≤d

n
× 100, (4.2)

where N(|EAi−RAi|)≤d is the number of estimations with an estimation error less than
or equal to d.

When optimizing the parameters with the cross validation the training and testing
sets are chosen randomly in each fold. So the results can slightly variate between two
optimization runs. Due to this fact all experiments were run several times, to get the
average performance.

4.1.1. Comparison with Khoa Luu et al. work

Because the basic idea was from Khoa Luu et al. work [29], the first evaluation is a
comparison to their results. For evaluation they used a static training set of 802 images
from the FG-NET database, optimizing the SVM parameters via cross validation. The
remaining 200 images were then used for testing the performance of the trained classifier.
A diagram of the age distribution is presented in Figure 4.1. The imbalance in age
ranges of the FG-NET database certainly also appears in the training and especially in
the testing set, in which there are only 10 test samples over 40 years, 3 over 50 years
and only 1 over 60 years of age. But more on this topic is at the end of this section.
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Figure 4.1.: Age distribution of the test and training set of Khoa Luu et al. work [29]

For evaluation the training and estimation procedure described in Section 3.3 were
performed. The results are listed in Table 4.1. In the first test only the first 30 parameters
of bc were used, reaching an overall MAE of 4.25 years and in the second one all 46
parameters were used reaching an overall MAE of 3.98 years. So actually the features
31-46 contain age relevant information, even though they only cover a small part of the
variation. In the columns 2-4 of Table 4.1 the performance of the single classifiers is
considered separately.

• The youth/adult classifier has an error of 16% using the 30 dimensional feature
vector and 17.5% using the 46 dimensional feature vector. This means that in the
second step the wrong classifier is applied to 16% or 17.5% of the tested samples.

To have an evaluation of the second step classifiers independent from the youth/adult
classifier, for their calculation all samples are given to the correct second step clas-
sifier, ignoring the errors of the youth/adult classifier.

• The youth classifier reaches a very low MAE of 1.84 with the 30 dimensional feature
vector and 1.69 years with the 46 dimensional one.

• The adult classifier is with an MAE of 5.83 years far above, but its age range is
nearly twice as large and hence the expectancy value as well. In addition the adult
classifier is trained only on 214 instead of 588 images. Because of the wider adult
age range this should rather be the other way around. In the end the results are
very close to the ones of Khoas Lue et al. [29], which indicates the functionality of
our implementation.

When taking a closer look at the evaluation method, an unpleasant thing stands out.
Besides the mentioned problem of having very few testing samples in the upper age
range, there are images of the same persons in the training and testing set. So if there
are two or more images of the same person with the same or nearly the same age, they are
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features used overall y/a classifier youth classifier adult classifier
MAE (years) error (%) MAE (years) MAE (years)

Khoa Luu et al. 4.37 - 1.93 5.80

combined 30 4.25 16.0 1.84 5.83

combined 46 3.98 17.5 1.69 5.83

Table 4.1.: MAE finding of our implementation on the training and testing set used in
Khoa Luu et al. work [29]

likely to be similar, which can influence the results. The same problem also occurs, when
randomly choosing the sets to optimize the SVM parameters, which may mislead the
classifier to learn some ”intra personal” relation. In consequence this evaluation method
will no longer be used and has been replaced by a new one, introduced in Section 4.1.2.

4.1.2. Leave One Person Out

The Leave One Person Out evaluation method (LOPO) always selects all pictures of
one person for testing, using all remaining samples as the training set. So in case of
the FG-NET database this leads to 82 folds. For each of these folds the whole training
and estimation procedure described in Section 3.3 is performed. When optimizing the
SVM parameter via cross validation on the current training set, the subjects instead of
the single images are now randomly chosen. Hence all pictures of one subject are either
in the training or testing set, avoiding that the classifier learns some ”intra personal”
relations. In the end all 1002 estimations are summarized, assuring a much more stable
performance evaluation, without any subject dependencies between the training and
testing set.

MAE Findings:

For the first test the combined vector bc with around 47 features (slightly variating
from fold to fold) was used, leading to an overall MAE of 5.58 years. Compared to the
results in Section 4.1.1 there is a significant overall MAE increase of over one and a half
years, confirming the doubts about the first evaluation method. It seems that especially
the adult classifier benefited from the dependencies between training and testing set,
probably caused by the small number of subjects with adult images.

Aside from bc, the AAM also provides separate shape and texture vectors, which were
used for the following tests.

1. Only the shape vector bs with around 27 features is used.

2. Only the texture vector bt with around 102 features is used.

3. Both, bs and bt are used by concatenating them.

All results are listed in Table 4.2. As expected bc and the concatenation of bs and bt
have a better performance than only using bs or bt. The shape with its low dimensional

25



representation, at least reaches an overall MAE of 6.16 years. Further bt outperforms
bs and is not far behind the combination of both. So the texture clearly seems to
contain more age information than the shape. The concatenation of bs and bt leads to a
slightly better estimation, which implies that shape and texture contain complementary
information. Finally the combined feature vector bc is also able to take advantage of
both, reaching the best overall MAE of 5.58 years and has in addition a lower dimension
than the concatenation of bs and bt.

A closer look at the second step classifiers shows that their results are very close
to each other, so they are not the reason for the overall MAE changes. These are
caused by the youth/adult classifier, where not only the error rate of 18.50% to 20.44%
strongly influences the overall result, it also makes a difference if it miss-classifies a
69 or a 21 year old person. However the second step classifiers do not really seem to
profit from the additional shape information, having nearly the same MAE as only using
the texture vector. Neither does bs improve the youth classifier nor does bt achieve
significantly better adult classification performance than bs. What can be confirmed is
that the combined texture and shape information allows a slightly better youth/adult
classification, leading to a reduced overall MAE.

features used overall y/a classifier youth classifier adult classifier
MAE (years) error (%) MAE (years) MAE (years)

shape only 6.16 20.44 2.32 7.77

texture only 5.84 19.24 2.15 7.55

shape & texture 5.71 18.84 2.16 7.55

combined 5.58 18.50 2.11 7.56

Table 4.2.: MAE for bs, bt, bs concatenated with bt and bc, tested with the LOPO method
on the FG-NET database

Age Range Analysis

To find the weaknesses of the classifier, the MAEs of the age ranges 0-9, 10-19,...,60-69
were calculated separately. All estimations are assigned to the age groups according to
the real age. The results of this are listed in Table 4.3 and show that the increase of
MAE in the upper age range is even more drastic than it seemed before. The reason
for this is probably the same as for why the overall MAE is a lot lower - The number of
images is drastically decreasing for the upper age range. So not only does the number of
training samples get reduced, but the estimated MAE is also only based on a couple of
images. The age range from 60-69 is the extreme case here with only 8 samples, which
means that there is not even one image for each age. A look into the database shows
that two of these images belong to person 3, two to person 4, one to person 5 and three
to person 6. So in the 4 folds where the samples are tested the training set/testing set
assignments are: 6/2, 6/2, 7/1 and 5/3, which makes the bad circumstances very clear.

Nonetheless the results contain a lot of information to analyze. To begin with, the
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differences between the feature combinations besides from the shape only version are
again very small. As discovered before, adding the shape information improves the
youth/adult error. For the concatenation of bt and bc the resulting performance increase
is as expected visible in all age ranges. In contrast for bc the lower youth/adult error
only improves the age ranges 0-9, 10-19 and 60-69, but in the others the performance is
sometimes even worse than with bt alone.

Because the differences between the feature combinations compared to the ones be-
tween the age ranges are marginal, a detailed analysis is only done for the combined
feature vector. The first range, which includes people from the age 0 to 9 years has the
lowest MAE of 2.28 years and is with 371 samples the largest group. Followed by the
age range from 10-19 with 339 samples, which has an overall MAE of 5.01 years. This
performance drop is not caused by the insufficient number of images, but by being close
to the youth/adult border. In the range from 0-9 only 1.62% of the samples are given to
the wrong second step classifier, but in the range from 10-19 there are 24.19%. The MAE
increase of the range 20-29 with 144 samples compared to the range 10-19 is surprisingly
small, considering that it is the first group that belongs to the adult classifier. The range
30-39 is expected to have a lower MAE than the range 20-29, because like the range 0-9
it is further away from the youth/adult border. But probably because there are only 79
images for training and testing, it is quite the opposite. The remaining ranges 40-49,
50-59 and 60-69 with 46, 15 and 8 samples confirm this assumption having a very huge
performance drop.

features used 0-9 10-19 20-29 30-39 40-49 50-59 60-69
MAE MAE MAE MAE MAE MAE MAE

shape only 2.77 6.19 7.61 8.18 14.13 23.27 33.50

texture only 2.73 5.65 7.22 8.17 14.15 23.28 34.79

shape & texture 2.52 5.54 7.08 8.03 13.83 23.15 34.00

combined 2.28 5.01 7.29 8.31 14.11 23.54 33.3

image count 371 339 144 79 46 15 8

Table 4.3.: Age ranges MAE for bs, bt, bs concatenated with bt and bc, tested with the
LOPO method on the FG-NET database
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Cumulative Scores:

The best representation for the Cumulative Score (CS) findings is a diagram, which
contains the score for every examined age error. Figure 4.2 contains just this up to an
age error of ten years. What is clear on first sight is that the CS confirms the MAE
findings in terms of the performance order. But additionally the CS is able to show that
over 30% of the estimations are already in an error range of only 1 year and over 70%
in an error range of the overall MAE (5.5-6 years). Only bs has a visible performance
gap of approximately 5% to the other features.
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Figure 4.2.: Cumulative score comparison for bs, bt, bs concatenated with bt and bc,
tested with the LOPO method on the FG-NET database
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Estimation Errors:

To get an impression of the single estimation errors, some of the most common are shown
in Figures 4.3, 4.4 and 4.5. Besides the estimation errors caused by a younger or older
appearance of the subject, bad image quality or uncommon head pose, there are also
some which are not easy to explain. For these it generally appears that the estimation
error is stable in a way that if a subject is estimated too young or old, this applies for
more than one image.

Regarding the single classifiers the following things appear:

1. For the youth/adult classifier the most common errors are made around the age
of 20, which is the critical region.

2. For the youth classifier no specific weaknesses could be found and large errors are
rare and small compared to the adult classifier.

3. For the adult classifier all large estimation errors are made in the upper adult age
range and due to the small number of training samples.

real age: 19 10 11 20
estimated age: > 20 > 20 > 20 > 20

real age: 23 26 23 21
estimated age: ≤ 20 ≤ 20 ≤ 20 ≤ 20

Figure 4.3.: Some youth/adult classification errors, tested with the LOPO method on
the FG-NET database, using the combined feature vector
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real age: 15 7 20 12
estimated age: 9 13 14 5

real age: 16 10 7 20
estimated age: 10 4 14 8

Figure 4.4.: Some large youth age estimation errors, tested with the LOPO method on
the FG-NET database, using the combined feature vector

real age: 58 60 62 63
estimated age: 36 32 35 37

real age: 49 52 61 69
estimated age: 24 29 30 39

Figure 4.5.: Some large adult age estimation errors, tested with the LOPO method on
the FG-NET database, using the combined feature vector
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4.2. Modifications

4.2.1. Using DCT Features

One capability of an ASM is to produce a shape free version of a learned object, in this
case the face. For AAM it is used to build the shape free texture model, so it should
also be a good basis for other transformation methods like DCT. As a baseline the
DCT feature extraction is done without the ASM. Instead, the eye coordinates are used
to align the images, so that the face is cut out and the eyes are at a fixed position. A
function for that is provided by the OKAPI library [22]. Some examples of the alignment
are shown in Figure 4.6. The second version uses the shape free image for the extraction.
Thus both versions only differ in this initial step. For the subsequent DCT extraction
the following steps are performed using the DCT extractor of the OKAPI library [22]:

1. The generated image is scaled to 64× 64 pixels.

2. The DCT is performed on blocks of 8× 8 pixels.

3. For each block the first 5 coefficients in the zig zag scanning order are kept, leading
to a 8× 8× 5 = 320 dimensional feature vector.

In contrast to AAM features, it is not necessary to scale the DCT parameters,
because they are already normalized.

Figure 4.6.: Examples for the image alignment

Besides using only the feature vector bd1 and bd2 of the first and second version a
combination of bd2 and bs is also used. The results of a LOPO evaluation with these
feature combinations are listed in Table 4.4 together with the combined feature vector’s
MAE as a reference. The overall MAE of bd1 is 0.26 years above the one of bc. Apart from
the higher dimensional feature vector, bd1 only needs the eye coordinates for initialization
and requires no fitting, so its performance is quite good for the much easier extraction
procedure. The consideration of the single classifiers shows that compared to bc the
youth/adult error decreases, but the MAE of the youth classifier and adult classifier
increases.

The overall MAE of bd2 is equal to the that of bc and this without using any shape
information. Concatenating bs decreases the overall MAE to a new optimum of 5.08
years, which is an improvement of 8.96% compared to the MAE of the combined feature
vector. A look at the single classifiers shows that again the performance boost is caused
by the youth/adult classifier. The error drops to 17.61% for bd2 and to 15.65% for the
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concatenation of bd2 and bs. Even the performance of the second step classifiers is slightly
worse than using bc, the overall MAE is better. The CS in Figure 4.7 confirm the MAE
findings. Using bd1 has the lowest CS for lower age errors, but the gap to bd2 and bc
closes for age differences above 7 years. Nearly the same applies for bd2 , which has a
lower CS than bc for age differences below 5 years. The concatenation of bd2 and bs has
the highest CS and outperforms all other features.

features used overall y/a classifier youth classifier adult classifier
MAE (years) error (%) MAE (years) MAE (years)

combined 5.58 18.50 2.11 7.56

DCT (Aligned) 5.91 17.42 2.75 7.85

DCT (ASM) 5.55 17.61 2.48 7.78

DCT (ASM) &
shape

5.08 15.65 2.19 7.80

Table 4.4.: MAE for bc, bd1 , bd2 and bd2 concatenated with bs, tested with the LOPO
method on the FG-NET database
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Figure 4.7.: Cumulative score comparison for bc, bd1 , bd2 and bd2 concatenated with bs,
tested with the LOPO method on the FG-NET database
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4.2.2. Global Classifier Modification

During the evaluation the youth/adult classifier turned out to be a major weak point.
Using the concatenation of bd2 and bs reduced the error to 15.56%, but this is still very
high, considering that the same feature combination with a youth/adult error of 0%
would reach an overall MAE of 3.74 years instead of 5.08 years. For bc it would even
decrease by 1.88 years to an overall MAE of 3.7 years. The idea is now to drop the
youth/adult classification and just have one global classifier for the whole age range
from 0 to 69 years.

The modification was tested with the LOPO evaluation using the best feature com-
binations of both previous parts, bc and the concatenation of bd2 and bs. With 5.50
years bc nearly reaches the same overall MAE as in the two step classification. This also
applies for the concatenation of bd2 and bs with an overall MAE of 5.08 years, which
questions the more complex two step classifier construction. A closer look at the results
shows that the combination of having only one classifier and the unbalanced data set
leads to the preference of youth classifications. The examination of the age ranges in
Table 4.5 makes this clear. For bc the ranges 10-19 and 20-29 benefit from dropping the
youth/adult classification, because there is no longer a critical region. An interesting
result of this is that the age range’s MAE is now inversely proportional to the number
of images in this range. As a result the MAE of the upper age ranges is significantly
higher, so that the age estimation error is even more unbalanced compared to the ”two
step” classification. The same applies for the concatenation of bd2 and bs. Hence the
”two step” classification is a better choice due to the more balanced age range errors.

features used 0-9 10-19 20-29 30-39 40-49 50-59 60-69
MAE MAE MAE MAE MAE MAE MAE

combined 2 step 2.28 5.01 7.29 8.31 14.11 23.54 33.3

combined 1 step 3.12 3.58 4.96 10.85 18.32 27.75 38.46

DCT (ASM) & shape 2 step 1.99 4.04 7.12 9.37 13.62 21.79 28.66

DCT (ASM) & shape 1 step 3.09 3.69 3.80 8.89 16.76 24.89 35.38

image count 371 339 144 79 46 15 8

Table 4.5.: Age ranges MAE for bc and concatenation of bd2 and bs, tested with the
LOPO method on the FG-NET database

4.2.3. Soft Youth/Adult Classification

The experiments in Section 4.2.2 showed that dropping the youth/adult classifier is no
solution. The new approach is to modify the youth/adult classifier in a way to make
the hard youth/adult decision softer. Therefore the decision value of the SVM is used,
which is an indicator for the classification confidence and its value is near zero for samples
which are near the decision border. So if the decision value is below a limit δ the decision
is rated as close. In these cases the age estimation is then done by the global classifier,
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which thus acts as a third second step classifier as illustrated in Figure 4.8. The value of
δ is learned during the parameter optimization of the youth/adult classifier. All decision
values of classified samples of the ages 20 and 21 are averaged, because they are expected
to be close decisions.

Figure 4.8.: The age classifier with the soft youth/adult classification

The modification was again tested with the LOPO evaluation using the feature com-
binations bc and the concatenation of bd2 and bs. The combined feature vector reaches
an overall MAE of 5.21 years. For the concatenation of bd2 and bs the modification leads
to nearly the same improvement of 6.1%, resulting in a new optimum overall MAE of
4.77 years. If the samples which are given to the global classifier are not counted as a
false classification, the youth/adult error decreases to 5.69% for bc and 4.59% for the
concatenation of bd2 and bs. Table 4.6 shows that the MAE of the age ranges 10-19
and 20-29 has improved as expected. Like in the global classifier modification there is a
MAE decrease in other age ranges, but by far not as much.

features used 0-9 10-19 20-29 30-39 40-49 50-59 60-69
MAE MAE MAE MAE MAE MAE MAE

combined 2.41 3.88 5.78 9.92 15.83 25.64 35.46

DCT (ASM) & shape 2.19 3.67 4.97 9.10 15.09 22.60 32.13

image count 371 339 144 79 46 15 8

Table 4.6.: Age ranges MAE for bc and concatenation of bd2 and bs with soft youth/adult
classification, tested with the LOPO method on the FG-NET database

The CS in Figure 4.9 confirms this improvement. Compared to the basic version the
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CS of the modification is always at least equal. To be more precise, for bc the modification
has a higher CS above an age difference of 4 years and for the concatenation of bd2 and
bs the CS is higher above an age difference of 7 years.
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Figure 4.9.: Cumulative score comparison with and without soft youth/adult classifica-
tion for bc and bd2 concatenated with bs, tested with the LOPO method on
the FG-NET database

4.3. Comparison to Other Estimation Techniques

Because the LOPO evaluation on the FG-NET database is used in other works, the
results can be directly compared, which is done in Table 4.7. The compared methods
are AGESlda [18], KAGES [16], WAS [24], AAS [23], kNN [31], mkNN [53], MSA [15],
LARR [19], RUN1 [54], RUN2 [55], SVR [56], GP [56], WGP [56], and MTWGP [56].
It appears that the proposed classifier system with the concatenated DCT and shape
vector and the soft youth/adult classification reaches the lowest MAE on the FG-NET
database. The corresponding CS comparison in Figure 4.10 confirms this result.
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Also very interesting is a comparison to the human skills of age estimation. For this,
the research results of Xin Geng and Zhi-Hua Zhou work [18] are used. 51 random
face images of the FG-NET database were given to 29 test candidates, leading to a
total of 51 × 29 = 1479 estimations for the MAE calculation. In the first test only the
greyscale image of the face area on which the AAM works was presented to the subjects,
leading to a MAE of 8.06 years. In a second test the candidates could see the whole
color image, resulting in a much better MAE of 6.23 years. Nevertheless our proposed
classifier system is able to beat both results and is clearly better when additionally using
the DCT and soft youth/adult classification.

Technique MAE (years)

combined 5.58
combined & soft y/a 5.27
DCT (ASM) & shape 5.08
DCT (ASM) & shape & soft y/a 4.77

AGESlda [18] 6.22
KAGES [16] 6.18
WAS [24] 8.06
AAS [23] 14.83
kNN [31] 8.24
mkNN [53] 4.93
MSA [15] 5.36
LARR [19] 5.07
RUN1 [54] 5.78
RUN2 [55] 5.33
SVR [56] 5.91
GP [56] 5.39
WGP [56] 4.95
MTWGP [56] 4.83
HumanA [18] 8.13
HumanB [18] 6.23

Table 4.7.: MAE comparison to other age estimation techniques, using LOPO method
on the FG-NET database
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Figure 4.10.: Cumulative scores comparison to other age estimation techniques, tested
with the LOPO method on the FG-NET database

4.4. Automatic Initialized Fitting

In real life there are no landmarks to initialize the AAM fitting, so there is no information
about size or position of the face. Trying to fit the AAM at any possible position in
any size will cost too much time and produce a lot of false positive detections. A better
solution to deal with this is to use a face detector to get position and size of the face. In
this work the MCT detector of the OKAPI library [22] is first used for face detection and
then for eye detection. The output of the face detection rectangle is used to verify that
the eyes are at the correct position of the face, which prevents false detections. After
this the eye coordinates are used to calculate how the mean shape has to be transformed
and stretched for the initialization. One example of this procedure is illustrated in
Figure 4.11. Here only the fitting of the shape is displayed, but at the same time the
texture as a part of the AAM is also fitted.
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Figure 4.11.: Example for the automatic initialized AAM fitting procedure. 1. MCT
face and eye detection (left), 2. initial shape (middle), 3. converged shape
(right)

Using two detectors assures a high accuracy, but demands that both provide a correct
result. Unfortunately this is not the case for 185 images of the FG-NET database, so
they are excluded from testing, because no fall back strategies were implemented. The
whole evaluation procedure stays nearly the same, with the small change that in the
estimation procedure these new set of feature vectors is used.

4.4.1. Evaluation

To evaluate how much the automatic initialized fitting influences the estimation per-
formance, all tests were run again with the new set of vectors. Because the automatic
initialized fitting does not work for all images, the number of tested samples is reduced.
To have comparable result all tests were also run on the reduced set using the ground
truth initialized fitting. The results are listed in Table 4.8, showing that there is a MAE
increase between 1.24 and 2.02 years. Especially the youth/adult and the youth classifier
seem to be affected, while the adult classifier’s MAE stays nearly the same.

Using only the shape has again clearly the weakest performance with an overall MAE
of 7.83 years. The performance of bt, bt concatenated with bs and bc is with an overall
MAE of about 7 years even closer together as before. The detection error of the eye
coordinates has a strong influence on the estimation performance of the alignment based
DCT extraction. The overall MAE increases by 1.95 years. The situation is completely
different for the second version, which has with 1.24 years the lowest performance de-
crease. bd2 alone reaches an overall MAE of 6.41, which is even further reduced to 6.12
years by concatenating it with bs.

The soft youth/adult classification in Section 4.2.3 improves the overall MAE of bc
to 6.47 years, of bd1 to 7.03 and of bd2 concatenated with bs to 5.67 years, which is
the best result and has with 1.24 years the lowest decrease. The MAE of the youth
and adult classifier of these tests are not listed, because of the mixture with the global
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classifier. Apart from that it would be the same like in the basic version, since for the
MAE calculation of the second step classifiers, all samples are always given to the correct
classifier.

In Figure 4.12 the CS of the ground truth initialized and automatic initialized fitting
is compared. This is done for bc and the concatenation of bd2 and bs. For the investigated
age differences the average CS decrease for bc is 8.78% and for bd2 and bs concatenated
it is 6.95%.

features used overall y/a class. youth class. adult class.
MAE (y) error (%) MAE (y) MAE (y)

shape only GI 5.81 20.38 2.25 7.33

shape only AI 7.83 25.67 3.28 7.83

texture only GI 5.31 17.63 2.10 7.05

texture only AI 7.20 23.01 3.01 7.48

shape & texture GI 5.17 17.01 2.08 7.03

shape & texture AI 7.12 22.33 2.97 7.58

combined GI 5.22 17.81 2.07 7.23

combined AI 7.11 23.36 2.91 7.40

DCT (Aligned) GI 5.32 16.28 2.56 7.35

DCT (Aligned) AI 7.28 21.34 3.96 7.77

DCT (ASM) GI 5.15 16.98 2.41 7.38

DCT (ASM) AI 6.41 20.38 2.86 7.76

DCT (ASM) & shape GI 4.74 16.01 2.14 7.34

DCT (ASM) & shape AI 6.12 20.14 2.73 7.61

combined & soft y/a GI 4.87 5.27 - -

combined & soft y/a AI 6.47 9.49 - -

DCT (Aligned) & soft y/a GI 5.07 6.44 - -

DCT (Aligned) & soft y/a AI 7.03 9.51 - -

DCT (ASM) & shape &
soft y/a

GI 4.43 5.08 - -

DCT (ASM) & shape &
soft y/a

AI 5.67 9.14 - -

Table 4.8.: MAE comparison for all feature combinations with and without automatic
initialized AAM fitting, tested with the LOPO method on the FG-NET
database. GI stands for ground truth initialized and AI for automatic ini-
tialized AAM fitting.
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Figure 4.12.: Cumulative score of bc and concatenation of bd2 and bs with and without
automatic initialized fitting, tested with the LOPO method on the FG-
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5. Conclusion

This paper presented a facial image-based age estimation system that combines local
appearance representation and shape information. A two step classifier is used for age
estimation, where the first step performs a classification between youths and adults, and
the second step performs the estimation of the exact age.

In Section 4.2.1 DCT was used as an alternative for the texture representation. Com-
bined with the shape information it even turned out to perform better than the combined
feature vector of the AAM, caused by the better youth/adult classification. Still the
youth/adult error was with 15.65% very high, so in a second modification it was tried to
drop the youth/adult classifier having only one global classifier for the whole age range.
Surprisingly this had no impact on the overall performance, but was actually coping
worse with the unbalanced age ranges. In a last modification an attempt was made to
soften the youth/adult classification by using the global classifier for close youth/adult
decisions, which improved the estimation performance. Combining the DCT extracted
features and shape information and taking a soft decision for youth/adult classification
attained a mean absolute error of 4.77 years, which is the lowest error reported on the
FG-NET aging database when using the Leave One Person Out evaluation scheme.

The unbalanced number of images over the ages, which the FG-NET databases pro-
vided stood out as a huge problem for several times. Above the age of 60 years there
is not even a sample for every age, which obviously makes training nearly impossible.
The age range analysis in Sections 4.1.2 and 4.2.2 showed that the MAE is inversely
proportional to the number of training images. So with an improved training set the
proposed classifier system has the potential to provide a balanced and high-performance
age estimation.

Finally the classifier’s performance in a real life application was tested. This means
that the AAM was fitted without using the landmark points from the database. The
chosen initialization procedure, consists of a face and eye detection, was not successful for
all images and no fall back strategies were implemented. So the performance comparison
was done on a reduced testing set, on which an increase of the MAE by more than one
year was observed.

5.1. Future Work

In a future work the proposed age estimation system performance should be tested on
an extended data set. Images of one of the other aging databased listed in Section 1.3
could be used. Since manually annotating the images is very expensive, the AAM
trained on the FG-NET database and the auto initialized fitting procedure introduced
in Section 4.4 could be used to detect the landmark points. These then could be used
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for a new AAM and age classifier training. Additionally the Mahalanobis distance as a
quality measurement for the fitting offers the possibility to sort out bad fitting results
and only take the accurate ones for the training. A further step would be to extend the
data set with multi-ethnic face images.

Like shown in Sethuram et al. work [42] the AAM feature extraction can be improved
by using specific AAM models for different age, gender, ethnic group, etc.. In case of
this work’s classifier system one possibility would be to use one global AAM for the
youth/adult classification and two more specific models for the second step classifiers.
Fitting the second model should also be simpler, because the same initialization shape
or even the result shape of the global AAM fitting could be used.

One interesting option to make the SVM classification more accurate is feature se-
lection. As shown in Figure 3.1 some age relevant features can be detected by simply
looking at its effect on shape and texture.
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A. Appendix

AAM Configuration File

1 #############################################################################

2 #

3 # Active Appearance Model Builder Configuration File

4 #

5 #############################################################################

6

7 2 # Model reduction [1-n] (reduction factor = 1/x)

8

9 0 # Model expansion [0-n] (pixels along the point normal)

10

11 1 # Use convex hull [0|1] (off/on)

12

13 0 # Verbose mode [0|1] (off/on)

14

15 1 # Write registration movie [0|1] (off/on)

16

17 1 # Write variance image [0|1] (off/on)

18

19 0 # Produce model documentation [0|1] (off/on)

20

21 1 # Use tangent space projection [0|1] (off/on)

22

23 1 # Training method [ 0=PC Regression, 1=Jacobian (recommended) ]

24

25 95 # Shape model truncation (percentage [0-100], -1=parallel analysis)

26

27 95 # Texture model truncation (percentage [0-100], -1=parallel analysis)

28

29 95 # Combined model truncation (percentage [0-100], -2=no combined model)

30

31 1 # Subsampling of the training set (during training) [1-n]

32

33 1 # Warping method [ 0=benchmark, 1=software, 2=hardware (requires OpenGL) ]

AAM Documentation FG-NET Database

1 ######################################################################

2

3 Active Appearance Model File

4

5 Written : Saturday May 29 - 2010 [15:03]

6
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7 Format version : 0.99

8

9 Build time : 12:23 (743.4 secs)

10

11 Shapes : 1002

12

13 Shape points : 68

14

15 Texture Bands : 1

16

17 Texture samples : 13636

18

19 Texture TF : identity

20

21 Model reduction : 2

22

23 Add Shape Extents : 0

24

25 Convex hull used : Yes

26

27 Tangent space used : Yes

28

29 Learning method : 1

30

31 Shape truncation level : 95 (variance: 0.0123/0.0129)

32

33 Texture truncation level : 95 (variance: 1.53/1.61)

34

35 Combined truncation level : 95 (variance: 2.91/3.06)

36

37 Parameters used : 48

38

39 Reference shape area : 13652.35

40

41 Combined mode variation :

42 1 30.17% ( 30.17%)

43 2 13.72% ( 43.89%)

44 3 11.25% ( 55.14%)

45 4 6.88% ( 62.02%)

46 5 5.51% ( 67.54%)

47 6 3.88% ( 71.42%)

48 7 2.93% ( 74.34%)

49 8 2.38% ( 76.72%)

50 9 1.58% ( 78.30%)

51 10 1.34% ( 79.64%)

52 11 1.16% ( 80.79%)

53 12 1.03% ( 81.83%)

54 13 0.96% ( 82.78%)

55 14 0.87% ( 83.66%)

56 15 0.75% ( 84.40%)

57 16 0.74% ( 85.14%)

58 17 0.62% ( 85.77%)

59 18 0.57% ( 86.33%)

60 19 0.54% ( 86.87%)
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61 20 0.52% ( 87.39%)

62 21 0.48% ( 87.87%)

63 22 0.46% ( 88.33%)

64 23 0.45% ( 88.78%)

65 24 0.41% ( 89.19%)

66 25 0.40% ( 89.59%)

67 26 0.38% ( 89.97%)

68 27 0.37% ( 90.34%)

69 28 0.35% ( 90.69%)

70 29 0.33% ( 91.02%)

71 30 0.30% ( 91.31%)

72 31 0.29% ( 91.60%)

73 32 0.28% ( 91.88%)

74 33 0.26% ( 92.14%)

75 34 0.25% ( 92.40%)

76 35 0.24% ( 92.64%)

77 36 0.24% ( 92.88%)

78 37 0.23% ( 93.11%)

79 38 0.22% ( 93.33%)

80 39 0.21% ( 93.54%)

81 40 0.20% ( 93.74%)

82 41 0.19% ( 93.93%)

83 42 0.19% ( 94.12%)

84 43 0.18% ( 94.30%)

85 44 0.18% ( 94.48%)

86 45 0.18% ( 94.66%)

87 46 0.17% ( 94.82%)

88 47 0.16% ( 94.98%)

89 48 0.16% ( 95.14%)

90

91 Shape mode variation :

92 1 49.94% ( 49.94%)

93 2 12.45% ( 62.40%)

94 3 8.85% ( 71.25%)

95 4 4.37% ( 75.62%)

96 5 4.09% ( 79.71%)

97 6 2.12% ( 81.83%)

98 7 1.98% ( 83.81%)

99 8 1.72% ( 85.53%)

100 9 1.13% ( 86.66%)

101 10 0.94% ( 87.61%)

102 11 0.82% ( 88.43%)

103 12 0.72% ( 89.15%)

104 13 0.69% ( 89.85%)

105 14 0.65% ( 90.50%)

106 15 0.57% ( 91.07%)

107 16 0.50% ( 91.57%)

108 17 0.42% ( 91.99%)

109 18 0.42% ( 92.41%)

110 19 0.39% ( 92.80%)

111 20 0.36% ( 93.16%)

112 21 0.33% ( 93.49%)

113 22 0.32% ( 93.81%)

114 23 0.28% ( 94.09%)
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115 24 0.28% ( 94.37%)

116 25 0.25% ( 94.63%)

117 26 0.24% ( 94.87%)

118 27 0.22% ( 95.09%)

119

120 Texture mode variation :

121 1 31.36% ( 31.36%)

122 2 21.06% ( 52.42%)

123 3 7.79% ( 60.21%)

124 4 3.34% ( 63.54%)

125 5 3.04% ( 66.58%)

126 6 2.66% ( 69.24%)

127 7 2.41% ( 71.66%)

128 8 1.49% ( 73.15%)

129 9 1.23% ( 74.38%)

130 10 1.18% ( 75.56%)

131 11 1.08% ( 76.64%)

132 12 0.86% ( 77.50%)

133 13 0.83% ( 78.33%)

134 14 0.78% ( 79.11%)

135 15 0.73% ( 79.84%)

136 16 0.69% ( 80.53%)

137 17 0.66% ( 81.19%)

138 18 0.62% ( 81.81%)

139 19 0.61% ( 82.42%)

140 20 0.51% ( 82.93%)

141 21 0.45% ( 83.38%)

142 22 0.45% ( 83.83%)

143 23 0.43% ( 84.26%)

144 24 0.43% ( 84.69%)

145 25 0.38% ( 85.07%)

146 26 0.36% ( 85.43%)

147 27 0.34% ( 85.77%)

148 28 0.33% ( 86.10%)

149 29 0.30% ( 86.40%)

150 30 0.29% ( 86.70%)

151 31 0.28% ( 86.98%)

152 32 0.27% ( 87.25%)

153 33 0.25% ( 87.50%)

154 34 0.25% ( 87.75%)

155 35 0.23% ( 87.98%)

156 36 0.22% ( 88.20%)

157 37 0.22% ( 88.42%)

158 38 0.20% ( 88.62%)

159 39 0.20% ( 88.82%)

160 40 0.19% ( 89.01%)

161 41 0.19% ( 89.20%)

162 42 0.18% ( 89.37%)

163 43 0.17% ( 89.55%)

164 44 0.17% ( 89.71%)

165 45 0.16% ( 89.88%)

166 46 0.15% ( 90.03%)

167 47 0.15% ( 90.19%)

168 48 0.15% ( 90.33%)
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169 49 0.15% ( 90.48%)

170 50 0.14% ( 90.62%)

171 51 0.14% ( 90.76%)

172 52 0.13% ( 90.89%)

173 53 0.13% ( 91.02%)

174 54 0.13% ( 91.15%)

175 55 0.13% ( 91.27%)

176 56 0.12% ( 91.40%)

177 57 0.12% ( 91.51%)

178 58 0.12% ( 91.63%)

179 59 0.11% ( 91.74%)

180 60 0.11% ( 91.86%)

181 61 0.11% ( 91.97%)

182 62 0.11% ( 92.08%)

183 63 0.11% ( 92.18%)

184 64 0.10% ( 92.28%)

185 65 0.10% ( 92.38%)

186 66 0.10% ( 92.48%)

187 67 0.10% ( 92.58%)

188 68 0.09% ( 92.67%)

189 69 0.09% ( 92.77%)

190 70 0.09% ( 92.86%)

191 71 0.09% ( 92.95%)

192 72 0.09% ( 93.03%)

193 73 0.08% ( 93.12%)

194 74 0.08% ( 93.20%)

195 75 0.08% ( 93.28%)

196 76 0.08% ( 93.36%)

197 77 0.08% ( 93.44%)

198 78 0.08% ( 93.51%)

199 79 0.08% ( 93.59%)

200 80 0.07% ( 93.66%)

201 81 0.07% ( 93.74%)

202 82 0.07% ( 93.81%)

203 83 0.07% ( 93.88%)

204 84 0.07% ( 93.94%)

205 85 0.07% ( 94.01%)

206 86 0.07% ( 94.07%)

207 87 0.06% ( 94.14%)

208 88 0.06% ( 94.20%)

209 89 0.06% ( 94.26%)

210 90 0.06% ( 94.32%)

211 91 0.06% ( 94.38%)

212 92 0.06% ( 94.44%)

213 93 0.06% ( 94.50%)

214 94 0.06% ( 94.55%)

215 95 0.06% ( 94.61%)

216 96 0.05% ( 94.66%)

217 97 0.05% ( 94.72%)

218 98 0.05% ( 94.77%)

219 99 0.05% ( 94.82%)

220 100 0.05% ( 94.87%)

221 101 0.05% ( 94.92%)

222 102 0.05% ( 94.97%)
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223 103 0.05% ( 95.02%)

224

225 ######################################################################
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