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Abstract— In this paper, we present a face registration
approach, in which alignment is done by minimizing the closest
distance at the classification step. This method eliminates the
need of a feature localization step that exists in traditional
face recognition systems and formulates alignment as an opti-
mization process during classification. In other words, instead
of performing a separate facial feature localization step and
localizing facial features according to some type of feature
matching score, in the proposed method, alignment is done by
directly optimizing the classification score. Moreover, a feature
detector can still be integrated to the system. In this case,
the output of the feature detector is used as the initial point
of the optimization process. Results of extensive experiments
have shown that the proposed approach leads very high correct
recognition rates, especially in the case of partial face occlusion,
where it is not possible to precisely detect the facial feature
locations. It has been also found that, in the case of using a
facial feature detector, the approach can tolerate localization
errors of up to 18% of the interocular distance.

I. INTRODUCTION

Face alignment is one of the most crucial processing steps
in face recognition systems. In order to have a meaningful
comparison between two face images, they need to be aligned
precisely. In traditional face recognition systems, to achieve
this, after face detection, facial feature points —generally eye
centers or corners— are located [1] and the face images are
aligned with respect to these points. However, facial feature
localization is a difficult task and imprecisely localized
feature points lead to misaligned faces.

Recently, two studies have been published on the robust-
ness of face recognition algorithms against registration errors
[2], [3]. These studies have shown that face recognition
algorithms’ performance relies heavily on face alignment
accuracy. In [2], the robustness of the eigenfaces algorithm
[4] is analyzed against horizontal and vertical translations,
as well as scale and rotation, which might occur due to
alignment using erroneously localized facial feature points. It
is found that the eigenfaces approach can tolerate variations
only up to 5% of the face image size. Similarly in [3], in
addition to the eigenfaces approach, Fisherfaces [5], elastic
bunch graph matching [6], Laplacianfaces [7], minimum
average correlation energy (MACE) [8], and pseudo two-
dimensional hidden Markov models [9] have been analyzed
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against registration errors. All these algorithms are observed
to be sensitive to misalignment.

There are only a few studies that have focused on building
face recognition systems which are robust to misalignment
[10], [11], [12]. In [10], from each training sample, 6615 ad-
ditional images are generated by perturbing the facial feature
locations. These images are projected onto the eigenspace
and for each subject the resulting feature vectors are modeled
with a Gaussian or a mixture of Gaussians. The identification
is done by finding the closest model. Similarly, in [11], 81
additional samples are derived from each training sample by
modifying the eye center locations. These samples are then
used as input to the Fisherfaces algorithm [5]. Different from
these two studies, in which additional samples are generated,
in [12], misalignment parameters are learned by solving
an optimization problem. Although these approaches have
improved performance over the baseline, they still cannot
fully handle misalignment. For example, in [10], on the AR
face database [13], around 80% and 50% correct recognition
rates are obtained against occlusion over randomly selected
50 subjects, for the within session and between session
experiments, respectively, whereas in this study around 95%
and 90% correct recognition rates are achieved for the
same conditions over 110 subjects. In [11], even with two
pixels translation, the performance drops by 30%, whereas
in this study, the performance stays constant with respect to
translations up to 18% of the interocular distance. Similarly,
in [12], there is still a significant performance drop even in
the case of small modifications, such as rotation of ±5◦,
scaling with [0.95, 1.05], or ±1 pixel shift, whereas in this
study rotations up to ±30◦, scaling factors up to [0.64,
1.36], and shifts up to 18% of the interocular distance, are
tolerated. In our proposed approach, once the face is located
with an automatic face detector, positions of the facial
features are roughly estimated. Search for the precise facial
feature positions is conducted around the estimated positions.
Various candidate facial feature positions are used to provide
several aligned test face images, while comparing a test face
image with an already aligned training face image. The facial
feature positions, which lead to the aligned test face image
that has the minimum distance to the training image, are
selected as the facial feature locations. Thus, for each training
sample, separate eye center positions are determined for the
test face image. In this way, inconsistencies across manual
eye center labels of the training images are also handled,
since, as already mentioned, for each training sample a
separate eye localization is performed by minimizing the
classification distance. This is different from traditional face
recognition approaches where only one eye center estimate is



used to match the test image against all the training samples
ignoring the possibility of having inconsistencies among the
manual eye center labels of the training samples. Although
the proposed system is free from feature localization, it is
still possible to integrate a feature detector to it. In this
case, the output of the feature detector is used as the initial
point of the optimization process. Experimental results have
shown once more that registration plays a very crucial role in
face recognition systems. Using a registration approach that
directly aims at minimizing the closest classification distance
provides insensitivity to erroneous facial feature localization.
In addition, it has been found that the main problem with
the upper facial occlusion caused by sunglasses is not the
missing eye region information, but the mis-localization of
the eye-related feature points which have been widely used
for face registration. Furthermore, in our experiments, the
obtained results with the proposed alignment approach even
outperform the ones obtained using the manual labels.

II. FACE ALIGNMENT

Since all humans have the same facial feature configura-
tion, once the face is located it is easy to roughly estimate
the locations of the facial features. In order to show this, we
plot in Fig. 1 the relative eye center positions with respect to
the center of the bounding boxes of faces. For this analysis,
we use the training samples of the AR [13] and the FRGC
[14] databases. The faces are detected with a generic face
detector [15]. As can be observed from Fig. 1, despite using
different databases and a generic automatic face detector,
the normalized relative eye center positions are densely
located. The median values of these eye center positions are
calculated both for the left and right eye to produce an eye
center hypothesis with respect to the automatically located
face rectangle. In order to contain all the deviations from
these calculated values due to variations in feature positions
across different identities and variations in the bounding
boxes generated by the automatic face detector, a window
size of 11× 11 pixels is determined around the eye centers.
It can be seen in Fig. 1 that a window size of 9× 9 would
suffice to cover all the points. Furthermore, with a fine tuned
face detector and improved face segmentation accuracy, this
region can become even smaller. However, for the sake of
having a generic approach without relying on the accuracy
of the face detector and in order to tolerate in-plane and
out-of plane rotations up to some extent, a larger window
size is selected. These regions are used as search regions to
determine the best matching eye centers between the test
image and training samples. In order to save processing
time during testing, in the implementation, the generation of
aligned face images using the eye center coordinates within
the determined region is performed offline, on the training
side1. The algorithm can be summarized as follows:
Training:

1Although to save processing time we generated aligned face images
on the training side, with a GPU programming implementation it is also
possible to perform this processing real-time on the test side. For example,
generating 705 aligned samples from a single test image takes only 24.8ms.

Fig. 1. Distribution of the eye centers with respect to the center of the
face bounding box.

(i) Have all the eye center location combinations between
the left and right eyes within the 11×11 pixels window
around the manual eye center labels,

(ii) Generate aligned face images according to these eye
center positions,

(iii) Extract a feature vector from each aligned face image.
Testing:

(i) Do face localization and estimate the eye center posi-
tions by adding (−11.5, 6.5) for the left eye center and
(11.5, 6.5) for the right eye center to the center of the
scaled face bounding box,

(ii) Align test face image with respect to the estimated eye
center position,

(iii) Compare the aligned test face image with all the aligned
face images generated from a training sample,

(iv) Find the aligned face image from the training sample
that provides the minimum classification distance,

(v) Perform steps (iii) and (iv) for each training sample,
(vi) Find the training sample that provides minimum clas-

sification distance,
(vii) Assign the identity of the best matching training sample

to the test image.
One can notice that having a window size of W × W

pixels around the eye centers causes W 4 eye center po-
sition combinations. However, the amount of comparisons
can be significantly decreased by utilizing a hierarchical
search scheme. Instead of having all the position combina-
tions within ±5 pixels, first the combinations at ±2 pixels
locations can be searched. This way, the number of eye
center position combinations at the first search step becomes
625. After determining the combination that provides the
minimum classification distance at the first step, at the second
step, the search is done ±1 pixel around the determined
eye center positions from the first search step. Thus, at
the second step W becomes 3, providing 81 combinations.
Since the classification is already done with the face image
aligned using the determined eye center positions from the
first search step, only 80 additional comparisons are needed
to be done at the second step, making overall a total of
705 comparisons per training sample. This search pattern is
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Fig. 2. Search pattern for (a) W = 11, (b) W = 9.

depicted in Fig. 2(a). The ”+” shows the search locations at
the first step, whereas ”x” shows the search locations at the
second step. The computational load can be further decreased
by having a window size of W = 9, and performing the
search first at the combinations of ±3 pixels and then at
the combinations of ±1 pixel around the determined eye
center locations from the first step, which makes in total
161 comparisons per training sample. The search pattern for
W = 9 is shown in Fig. 2(b).

It should be noted that, although on one hand the amount
of computation increases due to higher number of feature
vector comparisons, on the other hand, due to omitting a
separate feature detection step, some amount of computation
is saved. Moreover, as will be presented in the next section,
feature comparison consists of only a subtraction operation
which can be performed very fast.

III. FACE RECOGNITION

In this study, among the generic face recognition algo-
rithms, local appearance-based face recognition using the
discrete cosine transform (DCT) [16] is chosen for face
recognition. There are many advantages of this algorithm
over other generic face recognition algorithms, such as
eigenfaces [4] or Fisherfaces [5]. The first one is local
appearance modeling, in which a change in a local region
affects only the features that are extracted from the corre-
sponding block, while the features that are extracted from the
other blocks remain unaffected. The other important point
is data independent bases, which eliminates the need of
subspace computation. In addition, DCT provides fast feature
extraction, which facilitates real-time processing. Moreover,
this algorithm achieved the highest correct recognition rates
in the CLEAR 2007 evaluations [17], and found to perform
robustly under real-world conditions [18].

The LAFR approach can be summarized as follows: A
detected and registered face image is divided into blocks of
8×8 pixels size. Afterwards, on each 8×8 pixels block, the
DCT is performed. The obtained DCT coefficients are or-
dered using zig-zag scanning. From the ordered coefficients,
according to the feature selection strategy, M of them are
selected and normalized resulting in an M -dimensional local
feature vector. Finally, the DCT coefficients extracted from
each block are concatenated to construct the overall feature
vector. The classification is done using a nearest neighbor
classifier with the L1 norm as the distance metric [16].

Fig. 3. Sample images from the AR face database. The image on the left
is a sample training image. The one in the middle is a sample image with
upper face occlusion and the one on the right is a sample image with lower
face occlusion.

IV. EXPERIMENTAL RESULTS

The proposed face registration algorithm is evaluated
extensively under different conditions using the AR face
database [13]. From the database, one image per subject
is used from the first session for training. This image is
annotated as “1: neutral expression”. For testing we used five
images per subject. Face images from the second session,
which are annotated as “14: neutral expression”, are used
to assess the algorithm’s performance when there exists
no occlusion. For testing against upper face occlusion face
images with annotations “8/21: wearing sunglasses”, and for
testing against lower face occlusion the ones with annotations
“11/24: wearing scarf” are used, where the first number
corresponds to the label in the first recording session and the
second one corresponds to the label in the second recording
session. In the data set, there are 110 subjects who have all
these samples in both of the sessions. Sample images from
the database can be seen in Fig. 3. Setups of the experiments
are given in Table I.

In the experiments, face images are scaled to 64 × 64
pixels resolution. Ten-dimensional local feature vectors that
are extracted from each 8× 8 pixels block by removing the
first DCT coefficient and keeping the following first ten of
them are used. The selected coefficients are divided by their
standard deviations and normalized to unit norm.

A. Face Recognition Without Facial Feature Localization

The experimental results of the proposed automatic face
recognition system which does not need facial feature lo-
calization are presented in Table II. The achieved correct
recognition rates are very low when the training images
are aligned using only the manual eye center labels and
the test face images are detected with a generic automatic
face detector [15] and aligned using the estimated eye center
positions. The results improve significantly when all the eye
center combinations within the determined eye center regions
are used to align the training face images. For example, the
correct recognition rate increases from 32.7% to 97.3% in
the AR1scarf experiment and from 20% to 95.5% in the
AR1sun experiment. As can be seen from the table, there
is no significant performance difference between brute-force
search and hierarchical search when the window size is W =
11. However, the results are lower, when the window size is
W = 9, especially on the expeirments that contain occlusion.
The main reason is, due to occlusion, face detection quality
is very low in these cases, which in turn causes poor eye
center position estimates that cannot be covered with a
smaller window size. Another interesting observation that



TABLE I
EXPERIMENTAL SETUPS

Label of the ex-
periment

Gallery Probe

AR1scarf Face images without occlusion from session 1 Face images with scarf from session 1
AR1sun Face images without occlusion from session 1 Face images with sunglasses from session 1
ARneutral Face images without occlusion from session 1 Face images without occlusion from session 2
AR2scarf Face images without occlusion from session 1 Face images with scarf from session 2
AR2sun Face images without occlusion from session 1 Face images with sunglasses from session 2

TABLE II
OBTAINED CORRECT RECOGNITION RATES. THE RESULTS IN THE FIRST

COLUMN ARE OBTAINED USING JUST THE MANUALLY LABELED EYE

CENTER POSITIONS TO ALIGN A TRAINING SAMPLE. THE ONES IN THE

OTHER COLUMNS ARE ACHIEVED USING ALL THE EYE CENTER

POSITION COMBINATIONS TO ALIGN THE TRAINING SAMPLE. EITHER

BRUTE-FORCE OR HIERARCHICAL SEARCH IS CONDUCTED TO FIND THE

BEST MATCHING ALIGNED TRAINING SAMPLE.

Est.
labels
only

Brute-
force
search

Hierar.
search
W = 11

Hierar.
search
W = 9

AR1scarf 32.7% 97.3% 97.3% 94.6%
AR1sun 20.0% 95.5% 95.5% 90.9%
ARneutral 42.7% 100% 100% 97.3%
AR2scarf 40.0% 90.0% 89.1% 84.6%
AR2sun 13.6% 93.6% 93.6% 79.1%

can be derived from the table is that, very high correct
classification rates are obtained against occlusion problem.
Especially eye region occlusion is known to be one of the
biggest challenges in face recognition. The obtained results
imply that mainly the erroneous feature localization, thus
imprecise face alignment causes the poor performance in
the case of eye region occlusion. It is also intriguing to
observe that the correct recognition rate obtained in the
AR2scarf experiment is lower than the one obtained in
the AR2sun experiments, although lower face occlusion is
known to be an easier problem than the upper face occlusion.
The reason can be the textured surface of the scarfs which
might affect the classification decision more than the black
sunglasses. It should be also considered that, as already
shown, the main issue with the upper face occlusion is the
misalignment and once it is handled, very high performance
can be reached. Note that the achieved correct identification
rates are significantly higher than the ones presented in the
literature [10], [19], [20], [21], [22], [23].

B. Robust Face Recognition against Facial Feature Local-
ization Errors

Although the proposed system is free from feature local-
ization, it is still possible to integrate a feature detector to
it. In this case, instead of using the estimated eye center
positions, the output of the facial feature detector is used
as the initial point of the optimization process. In the scaled
faces, the distance between the eyes is 27 pixels. Conducting
search within ±5 pixels in the case of window size W = 11

provides insensitivity to the localization errors of up to 18%
of the interocular distance, whereas conducting search within
±4 pixels in the case of window size W = 9 provides
insensitivity to the localization errors of up to 14% of the
interocular distance.

To analyze the contribution of the proposed method to
the performance of the face recognition system that uses a
separate feature detection step, several experiments are con-
ducted by using the manually labeled eye center positions of
the test face image as the localization output of an automatic
feature detector and adding different levels of noise to them
to imitate registration errors. In the experiments, training
images are registered with respect to the original, manually
annotated eye center labes, whereas equally distributed ran-
dom noise, ranging from 1% to 15% of the distance between
the eyes, are added to the manaul eye center labels of the
test images. For each noise level a separate classification is
done. Correct recognition rates obtained by brute-force and
hierarchical search with window size W = 11 are plotted.
In these experiments, we have also conducted hierarchical
search with window size W = 9, which has been found to
perform similarly to the hierarchical search with window size
W = 11, except at the noise level of 15% of the distance
between the eyes, where a slight decrease in performance
has been observed.

In Fig. 4, the correct recognition rates obtained on the
AR scarf experiments are depicted. The AR1scarf and the
AR2scarf plots correspond to the results attained using
just the provided eye center positions. The plots with the
suffix “bf” correspond to using multiple eye center position
combinations and doing brute-force search, and the ones
with the suffix “hs” correspond to using multiple eye center
position combinations and doing hierarchical search. As can
be observed even without adding any errors and using the
provided manual eye center labels (the point “0” in the x-
axis), the proposed method improves the correct recognition
rates significantly. On AR1scarf, the performance increases
from 91.8% to 97.3% and on AR2scarf, it increases from
83.6% to 90.0%. Both brute-force and hierarchical search
provided the same results at this level. As can be seen, as
the error increases, the performance deteriorates, however,
with the proposed method the achieved correct recognition
rates stay consistent with respect to different error levels.
No significant performance difference is observed between
doing brute-force search and hierarchical search.

The correct recognition rates obtained on the AR sun



Fig. 4. Performance with respect to localization errors. The plots without
suffix correspond to using only provided noisy labels, the ones with the
suffix “bf” correspond to using multiple eye center position combinations
and doing brute-force search, and the ones with the suffix “hs” correspond
to using multiple eye center position combinations and doing hierarchical
search. The proposed approach provides stable results over localization
errors.

experiments are plotted in Fig. 5. The improvement in correct
classification rates provided by the proposed approach is
even more remarkable in these experiments. The correct
recognition rate is 38.2% on the AR1sun and 37.3% on the
AR2sun experiments when only the manual eye center labels
are used. They become 97.3% and 95.5%, respectively, when
all the eye center position combinations are utilized within
the determined eye region. This outcome is not surprising,
since it is not possible to precisely label the actual eye
centers even manually due to occlusion caused by sunglasses
which leads to misalignment. Again, correct recognition rates
remain stable with respect to varying error levels. However,
this time, it decreases when 15% of the interocular distance
is added to the manual eye center labels as noise. As stated
before, in these experiments, manual eye center labels are
assumed to be precise and the errors are induced to these
labels in order to imitate the localization errors. Nevertheless,
these labels are not precise in the case of wearing sunglasses.
Because of this reason, when the eye center positions are
modified by 15% of the interocular distance, depending on
how precise the manual label is, on some test images the
modification could be higher than 18% of the interocular
distance with respect to the actual eye center position, which
is the upper limit of registration error that the proposed
system can tolerate.

Again note that the achieved correct recognition rates are
very high compared to the ones presented in the literature that
are attained on the same database [10], [19], [20], [21], [22],
[23]. Moreover, the system is also very fast. For instance,
classifying a single image in the AR database takes only
10.8ms in a Pentium IV, 3GHz PC, which is significanlty
faster than the approach presented in [23], in which, it
is stated that, 75 seconds is required per test image on a
PowerMac G5.

The results of using only manual labels and the proposed
alignment approach are given in Table III. As mentioned be-
fore, the correct recognition rates obtained with the proposed

Fig. 5. Performance with respect to localization errors.

TABLE III
OBTAINED CORRECT RECOGNITION RATES. THE RESULTS IN THE FIRST

COLUMN ARE OBTAINED USING JUST THE MANUALLY LABELED EYE

CENTER POSITIONS TO ALIGN A TRAINING SAMPLE. THE ONES IN THE

OTHER COLUMNS ARE ACHIEVED USING ALL THE EYE CENTER

POSITION COMBINATIONS TO ALIGN THE TRAINING SAMPLE. EITHER

BRUTE-FORCE OR HIERARCHICAL SEARCH IS CONDUCTED TO FIND THE

BEST MATCHING ALIGNED TRAINING SAMPLE.

Manual
labels
only

Brute-
force
search

Hierar.
search
W = 11

Hierar.
search
W = 9

AR1scarf 91.8% 97.3% 97.3% 98.2%
AR1sun 38.2% 97.3% 97.3% 99.1%
ARneutral 92.7% 100% 100% 99.1%
AR2scarf 83.6% 90% 90% 88.2%
AR2sun 37.3% 95.5% 95.5% 94.6%

alignment approach is superior to the ones obtained using
the manual labels. No significant performance difference is
observed between doing hierarchical search with W = 11
and W = 9. It is the first time in the literature that
higher performance is achieved by using automatic alignment
compared to using manual alignment performed by utilizing
manually labeled facial feature points.

It is intriguing to investigate whether the stable perfor-
mance with respect to misalignment and significant perfor-
mance increase in the case of occlusion are solely provided
by the proposed face registration approach or its integra-
tion to the local appearance-based face recognition using
DCT [16]. Therefore, we integrated the proposed registration
algorithm to eigenfaces approach [4] and conducted the
same experiments. Mahalanobis cosine (MAHCOS) distance
metric is used in nearest neighbor classification. The obtained
results can be seen from Table IV. It is clear that eigenfaces
algorithm cannot benefit from the proposed face alignment
technique, mainly, due to its data-dependent bases.

V. CONCLUSION

In this paper, we addressed the misalignment problem
in face recognition systems. Different from traditional face
recognition systems, the proposed algorithm does not need an
additional facial feature localization step for face registration.



TABLE IV
PERFORMANCE OF EIGENFACES ALGORITHM. THE RESULTS IN THE

FIRST COLUMN ARE OBTAINED USING JUST THE MANUALLY LABELED

EYE CENTER POSITIONS TO ALIGN A TRAINING SAMPLE. THE ONES IN

THE SECOND COLUMN ARE ACHIEVED USING ALL THE EYE CENTER

POSITION COMBINATIONS TO ALIGN THE TRAINING SAMPLE.
BRUTE-FORCE SEARCH IS CONDUCTED TO FIND THE BEST MATCHING

ALIGNED TRAINING SAMPLE.

Eigenfaces —
manual—

Eigenfaces —
auto—

AR1scarf 28.2% 23.6%
AR1sun 17.3% 26.4%
AR2scarf 17.3% 15.5%
AR2sun 17.3% 23.6%

It implicitly performs feature localization at the classification
step. There are four main findings from this study.

• It has been shown that, facial feature localization step
can be eliminated from the face recognition systems and
the alignment can be performed by directly aiming at
minimizing the closest classification distance. Very high
correct recognition rates have been achieved on the AR
face database [13].
• It has been shown that the proposed registration approach

performs even better than doing registration with manual
labels. For instance, on the AR face database [13], against
lower facial occlusion, the obtained result when the test
images are aligned using the manual labels was 91.8%,
while with the proposed registration approach it has be-
come 97.3%.
• It has been found that the main problem with the upper

face occlusion is due to registration errors, and not the
occlusion itself. Due to the sunglasses, the eye center
points that are widely used for face alignment can not
be reliably labeled even manually. When only the manual
labels are used to align the test images, the achieved
correct recognition rate against upper facial occlusion with
sunglasses is 38.2% on the AR face database [13]. The per-
formance jumps to 97.3% with the proposed registration
approach.
• The optimization procedure integrated to the classifica-

tion step makes the face recognition system insensitive
to the facial feature localization errors. The algorithm
can tolerate up to 18% of the interocular distance as
localization error, and up to this point it provides stable
performance.

It is important to note that although previous studies [10],
[11] also tried to utilize additional samples, they were not
able to provide stable performance with respect to misalign-
ment. The stable performance and significant performance
increase in the case of occlusion is only possible with the
integration of the proposed face alignment approach to the
local appearance-based face recognition using DCT [16].
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